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Abstract. In many systems, servers do not turn on instantly; instead, a setup time

must pass before a server can begin work. These “setup times” can wreak havoc on

a system’s queueing; this is especially true in modern systems, where servers are

regularly turned on and off as a way to reduce operating costs (energy, labor, CO2,

etc.). To design modern systems which are both efficient and performant, we need to

understand how setup times affect queues.

Unfortunately, despite successes in understanding setup in a single-server system,

setup in a multiserver system remains poorly understood. To circumvent the main dif-

ficulty in analyzing multiserver setup, all existing results assume that setup times are

memoryless, i.e. distributed Exponentially. However, in most practical settings, setup

times are close to Deterministic, and the widely used Exponential-setup assumption

leads to unrealistic model behavior and a dramatic underestimation of the true harm

caused by setup times.

This paper provides a comprehensive characterization of the average waiting

time in a multiserver system with Deterministic setup times, the M/M/k/Setup-

Deterministic. In particular, we derive upper and lower bounds on the average waiting

time in this system, and show these bounds are within a multiplicative constant of

each other. These bounds are the first closed-form characterization of waiting time

in any finite-server system with setup times. Further, we demonstrate how to com-

bine our upper and lower bounds to derive a simple and accurate approximation for

the average waiting time. These results are all made possible via a new technique for

analyzing random time integrals that we named the Method of Intervening Stopping

Times, or MIST.

Key words: queueing; multiserver systems; setup times; Deterministic setup

times; exceptional first service

1. Introduction

1.1. What are setup times?

In many systems, servers do not turn on instantly; instead, a setup time must pass before a server can

begin work (Allahverdi and Soroush 2008). For example, for applications hosted in the cloud, application
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replicas must take time to boot up before they can begin fulfilling requests (Rzadca et al. 2020); for over-

whelmed hospitals, traveling nurses must wait to have their credentials confirmed before they can begin

helping patients (Tuttas 2013); for many businesses, workers must go through a long and expensive recruit-

ment/onboarding process before they can begin serving customers (Behroozi et al. 2020). By thinking about

this “initial delay before service” as an abstract setup time, we can learn how setup time affects all of these

systems simultaneously (Allahverdi and Soroush 2008).

1.2. Why do setup times matter?

Setup times can have a significant impact on a system’s queueing behavior, especially in modern systems.

For systems which keep their servers on all the time, clearly setup times do not affect their performance.

However, in many modern systems, servers are regularly turned on and off. Because servers don’t turn on

instantly, jobs in a system with setup times end up delayed compared to their no-setup counterparts. If setup

times are long enough, this additional delay can be significant.

Nevertheless, many systems still regularly turn their servers on and off. Why? Because, by doing so, they

can save a considerable amount on operating costs (e.g. energy, money, CO2, etc.) (Rzadca et al. 2020).

However, this cost-saving measure is only a viable option if the additional delay caused by setup times is

not too large. Therefore, if we want to design systems which are simultaneously efficient and performant,

we need a good understanding of how setup times affect queueing performance.

1.3. Prior Art on Understanding the Effect of Setup Times

State of the art. Unfortunately, despite continued academic interest, we still struggle to understand the

impact of setup times on customer wait times outside of a few very simple settings. In the single server

setting, (Welch 1964) completely characterized the behavior of the waiting time under extremely general

conditions, i.e. in the M/G/1 queue with generally-distributed setup times. In the more complex multiserver

setting, little progress was made until the publication of (Gandhi et al. 2013) almost half a century later.

Outside of the fact that the model of (Gandhi et al. 2013) has multiple servers, their model is much simpler

than that of (Welch 1964). In particular, the main results of (Gandhi et al. 2013) rely on the assumption

that both job service times and server setup times are distributed Exponentially, i.e. the authors study the

M/M/k/Setup-Exponential model.

Limitations of the Exponential model. Despite the fact that (Gandhi et al. 2013) represented the first

breakthrough in our understanding of the setup effect in 50 years, their results are limited in two significant

ways. First, instead of a closed-form formula for the average waiting time, the authors only derive an

algorithm for computing the average waiting time. This algorithm is useful in the sense that it bypasses the

need to simulate the system, but unfortunately fails to give intuition about how wait times scale with system

parameters. Second, one of their simplifying assumptions, that setup times are distributed Exponentially,
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Figure 1 Simulation results for the M/M/k/Setup-Deterministic, M/M/k/Setup-Exponential, M/M/k (no setup), with mean ser-

vice time 1
µ
= 1 ms, mean setup time β = 1000 ms, and load kept at a constant ρ = 0.5. Note the high separation

between the Exponential and Deterministic models at large scales.

turns out to severely limit the utility of their results. We discuss this point in depth within Section 1.4,

but, put briefly, this lack of utility stems from the fact that setup times have relatively low variance (Mao

and Humphrey 2012), i.e. they are closer to Deterministic than Exponential. Accordingly, we analyze the

Deterministic version of the (Gandhi et al. 2013) model.

Previous work on the Deterministic model. At the moment, only one other result characterizing the aver-

age waiting time in the M/M/k/Setup-Deterministic exists: (Williams et al. 2022). The paper (Williams

et al. 2022) proves the first-ever lower bound on the average waiting time in the M/M/k/Setup-Deterministic

queue. (Williams et al. 2022) differs from this paper in a few ways. First, (Williams et al. 2022) proves

only a lower bound on the average waiting time, whereas we prove the first-ever upper bound as well as a

nearly matching lower bound. Furthermore, our lower bound is significantly stronger. To be more precise,

(Williams et al. 2022) incorporates additional assumptions to prove their result, and the final result there

becomes trivial in certain scaling regimes. In contrast, our proofs only assume 1) that setup times are sig-

nificantly larger than service times and 2) that enough servers are being regularly utilized, and we prove

explicitly that our lower bound and upper bound are separated by at most a multiplicative constant.

1.4. Limitations of the Exponential model

The Exponential model is unrealistic. As previously mentioned, the Exponential assumption of (Gandhi

et al. 2013) turns out to be extremely problematic; we highlight two particular issues. First, this assumption

leads to unrealistic model behavior. To illustrate where the breakdown in realism happens, consider a sce-

nario where only a single server is setting up and compare it to a scenario where 100 servers begin setup at
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the same time. In the Deterministic model, all 100 servers perform no work while they are setting up, then

all of them turn on simultaneously. By contrast, in the Exponential model, the 100-server system receives its

first server on average 100 times faster than the single-server system receives its first server. In other words,

in the Exponential model, the longer the system’s queue is, the more rapidly the system’s servers turn on to

help drain that queue. In a sense, the Exponential system can rapidly “react” to increases in queue length.

Note that this “blessing of variability” effect only comes into play when there are multiple servers; in the

single server case, as seen in Figure 1, the variability in setup time hurts the waiting time.

The Exponential model underestimates waiting. This unrealistic “reactivity” phenomenon causes a fur-

ther, more concerning, problem: in real systems, the Exponential model dramatically underestimates how

much waiting actually occurs. To be more precise, in modern systems: 1) average setup times are often

larger than average job sizes by two or three orders of magnitude (Gandhi et al. 2012, Mao and Humphrey

2012, Mogul and Kompella 2015, Maheshwari et al. 2018, Hao et al. 2021); and 2), as noted in the state-

of-the-art paper (Gandhi et al. 2013), setup times are actually closer to Deterministic. When these two

criteria are satisfied, as observed in Figure 1, the true waiting time is often orders of magnitude larger than

what the Exponential model predicts. Accordingly, in many practical studies of the setup effect (Gandhi

et al. 2012, Kara 2017, Hyytiä et al. 2018), setup times are assumed to be Deterministic, e.g. servers take a

fixed time of 2 minutes to set up. However, despite its apparent practical limitations, the Exponential setup

model remains the de facto choice for theoretical analysis, since it allows for the application of a number of

existing theoretical techniques.

1.5. Our Results

In this paper, for the first time, we provide the first characterization of the average waiting time in a

dynamically-provisioned multiserver system with Deterministic setup times; we plot our results in Fig-

ure 2a. To be more specific, we study the Deterministic analogue of the model in (Gandhi et al. 2013), the

M/M/k/Setup-Deterministic, and derive three main results. Our first result is Approximation 1, a prediction

of the average waiting time which appears extremely accurate across a wide variety of parameter settings

(see Figure 4 for a detailed visualization). When simplified, this closed-form approximation roughly states

that

E [TQ]≈
1

2

√
π

2

β√
kρ

+
1

µk(1− ρ)
.

In support of this approximation, in our second and third results, we prove upper and lower bounds on

the average waiting time; these make up Theorems 1 and 2, respectively. Furthermore, we later show, in

Theorem 3, that our results capture the correct order-wise scaling of the average waiting time—they agree,

up to multiplication by an absolute constant. Note that, at the moment, no other such characterizations exist

for any similar multiserver setup system; not even for the extensively-studied M/M/k/Setup-Exponential

model.
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(a) An illustration of our results.
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(b) A provisioning example.

Figure 2 Our theoretical results along with simulation data for the M/M/k/Setup-Deterministic and M/M/k/Setup-Exponential,

varying the number of servers k while keeping the mean service time 1
µ
= 1 ms, the mean setup time β = 1000 ms,

and the load ρ = 0.5 fixed. (a) A comparison of our results to the true average waiting time in the M/M/k/Setup-

Deterministic. Our results behave like the true average waiting time, while the Exponential model behaves differ-

ently. (b) A provisioning example highlighting the differences between the Deterministic and Exponential models. To

achieve a target waiting time of 20 ms, our approximation correctly predicts it will take k ≈ 2000 servers, while the

Exponential model predicts that only k≈ 50 servers should suffice. See Figure 4 for a more comprehensive evaluation.

1.6. Impact: How understanding setup times helps with capacity provisioning

A common but complex problem which arises in many areas is that of designing a system such that the

average waiting time of a customer is below some target waiting time. Historically, we understand this

problem well for systems without setup times, e.g. there’s a straightforward formula for the average waiting

time in the M/M/k without setup. Unfortunately, our understanding of this problem is quite poor for more

modern systems, since their average waiting times are affected by setup times. In particular, modern systems

dynamically control the number of servers that they keep on, periodically turning servers off in order to

save energy. As we mentioned before, previous results on understanding the relationship between setup

times and the average waiting time leave much to be desired. Our new results expand on the state-of-the-art

Exponential model in two important ways: 1) obtaining the predicted average waiting time is much easier

computationally, and 2) the quality of the prediction is much better.

Easier predictions. Compared to the Exponential model, our new Deterministic approximation greatly

simplifies the design process. In particular, when predicting the average waiting time in the Exponential

model using the state-of-the-art method from (Gandhi et al. 2013), one must solve a system of O(k2)

quadratic equations to find the average waiting time E [TQ]. Two practical issues arise from this fact. First,

the equations change depending on the number of servers k, meaning that the computation must be repeated

every time one wishes to test a new number of servers. Second, the opacity of the process makes it difficult
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to get intuition about how the average waiting time changes as one alters the system parameters. In contrast,

Approximation 1 is a relatively simple function of the relevant parameters. The simplicity of our approxi-

mation has, likewise, two benefits: 1) computing the waiting time becomes easy, and 2) our approximation’s

form makes it clear how and why the waiting time behaves the way it does.

Higher quality predictions. Moreover, when compared to the predictions of the Exponential model, the

predictions we obtain using our Deterministic approximation are of a much higher quality. This difference

in quality is perhaps best illustrated by looking at a simple example. In Figure 2b, we compare the prediction

from the Exponential model to the prediction from our approximation, plotting how the predicted average

waiting time changes as one increases the number of servers k while fixing the load ρ = 0.5, the average

setup time β = 1000 ms, and the average service time 1
µ
= 1 ms (note that these are typical relative values in

many applications (Mao and Humphrey 2012)). Our goal is to determine how large the number of servers k

needs to be before we reach our target waiting time T target = 20 ms. In both models, the average waiting time

decreases as the system gets larger. However, the Exponential model predicts that the average waiting time

will be small enough once k = 50. On the other hand, as captured by our approximation, the Deterministic

setup system will only reach the target waiting time once the number of servers k≈ 2000 —a full 40 times

larger than what the Exponential system predicts! At even a modest number of servers, the Exponential

system underestimates the waiting time by orders of magnitude.

1.7. Challenges and Our Approach

What makes the multiserver setting difficult. Although the harm caused by setup times is non-trivial to

understand even in single server systems, the setup effect can be especially difficult to understand when

multiple servers can set up at the same time. In particular, when servers can set up simultaneously, their

server states begin to interact; via the speed of their processing, the system’s busy servers indirectly control

the setup behavior of the system’s not-busy servers. For example, if server A is on while server B is setting

up, then server A might finish all the work in the queue before server B even has a chance to turn on. As

such, in the multiserver setting, it can sometimes make sense to cancel a server’s setup process; a situation

which would never occur in the single server setting. Of course, the opposite can also happen: if the busy

servers are working much more slowly than expected, then the queue might grow large enough that we begin

setting up a server that would otherwise be left off. This interaction between departure behavior and setup

behavior is exactly what makes the setup effect so much harder to understand in the multiserver setting.

Why Deterministic setup is especially difficult. As such, while using Deterministic setup times might be

more realistic, it also comes with a set of unique theoretical challenges. In the Deterministic case, there is

no avoiding the complexity of setup: even in simulation, one must track the individual remaining setup time

of every server that is currently setting up. By contrast, because the Exponential distribution is memoryless,

in the Exponential case it suffices to track only the total number of servers setting up, greatly simplifying
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the system state. Moreover, the Exponential model’s simple state forms a Continuous-Time Markov Chain,

a well-studied class of stochastic processes for which a number of techniques have been developed. For the

Deterministic setup model, no such techniques exist.

Our approach. To derive our first-of-their-kind results, we develop a new technique called the Method of

Intervening Stopping Times, or MIST, which allows us to more naturally investigate queueing systems with

high-dimensional, continuous-valued state spaces. Generally, MIST is a method for bounding the expec-

tation of a random time integral, and it works by dividing up the original time interval into smaller, more

manageable pieces using stopping times. By focusing on these smaller pieces, we avoid the issue of track-

ing the entire high-dimensional system state at every point in time. Instead, MIST allows us to narrow our

focus to only the “most important” aspects of the state for a particular integral, and to shift our definition

of “most important” based on the particular integral we are analyzing. Since, for a particular integral, we

know the most important aspects of the system state, we can derive strong bounds on that integral that hold

regardless of the remaining state information. Moreover, we can apply this approach recursively, chopping

a still-large time interval into a sequence of even smaller time intervals. By chopping time in the right way,

eventually we can make the system so well-behaved during an interval that we can adapt powerful tech-

niques like martingale theory and Wald’s equation to the analysis of a phase. To place our approach in a

broader context, MIST could be considered a fleshed-out instantiation of a suggestion made by Kingman in

Kingman (2009) that “ ...it may be possible to sew these small martingales, or constant multiples of them,

together to form a martingale on the whole line, and then all the apparatus of martingale theory—stopping

identities, inequalities, central limit theorems, and the like—becomes available;” for more details on our

approach, see Section 5.

1.8. Potential Mitigation

The delay in serving jobs due to setup times comes from turning servers off and then needing to wait

before those servers can turn on. One way to potentially mitigate the impact of setup times is then to turn

off servers less aggressively. We analyze such an approach in Appendix H, and our analysis reveals that a

natural class of policies have minimal impact on the waiting time. This preliminary analysis highlights the

need for further studies on designing policies for turning servers on and off in queueing systems with setup

times to achieve a better tradeoff between energy efficiency and performance.

1.9. Outline

We proceed in the following order: In Section 2, we give a detailed description of our model. In Section 3,

we discuss the previous work on analyzing setup times in greater detail. In Section 4, we fully state our

main results. In Section 5, we discuss the key ideas which enabled us to prove our main results, including
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Figure 3 An example of M/M/k/Setup-Deterministic with k = 4. The state pictured has Z(t) = 2 busy servers, which means

there are 2 jobs in service. There is Q(t) = 1 job in queue, and thus N(t) =Z(t)+Q(t) = 4 jobs in system.

MIST. In Section 6, we give the proof of Theorem 1; we relegate the proof of Theorem 2 to Appendix B.

Finally, in Section 7 we make some closing remarks and propose follow-up work based on our findings.

2. Model: The M/M/k/Setup-Deterministic Queue

The system behavior, excluding setup. We now describe our model of interest, the M/M/k/Setup-

Deterministic. As in the typical M/M/k queue, jobs arrive in a Poisson process of rate kλ into a FCFS queue

where jobs wait to be served at one of k servers. The job at the head of queue enters service whenever a

server frees up, either from a job completing service or from a server finishing set up. Once a job enters

service, it remains in service for Exp(µ) time before departing. We assume all the servers have identical

service and setup distributions. As such, we can assign each server an index from 1 to k, and without loss of

generality assume that departures always occur at the busy server with the highest index; i.e., we re-index

the servers when a job departs so the server with the newly departed job has the highest index among the

busy servers. From here, we define the quantity Z(t) to be the number of busy servers (or jobs in ser-

vice) at time t, the quantity Q(t) to be the number of jobs waiting in the queue at time t, and the quantity

N(t) =Q(t) +Z(t) to be the total number of jobs in our system. Excluding the setup dynamics, one sees

that, as promised, the behavior of our model is identical to the M/M/k queue.

The setup dynamics. From here, it suffices to describe precisely how servers will be turned on and off.

We assume that each server is always in one of three states: on, off, or in setup. A given server remains on

only as long as that server remains busy. In other words, a server turns off when it finishes its current job and

the queue is empty. Recall that we re-index the servers to ensure that the job departure is from the highest

indexed server among the busy servers. On the other hand, server i begins setup when a job arrives to the

system and there are only i− 1 jobs in the system. Server i remains in setup until one of two events occurs:

either 1) some fixed quantity β time has passed, or 2) there are fewer than i jobs in the system; accordingly,

we refer to β as the setup time of a server. In the first case, if β time has passed without N(t) dipping

below i, then server i has completed its setup and begins working on the job at the head of the queue. In
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the second case, if the number of jobs N(t) dips below i before server i completes setup, then the setup

is canceled and server i turns off. We use Yi(t) to denote the detailed state of server i at time t. If server i

is off, we set Yi(t) = OFF; if server i is on, we set Yi(t) = ON; if server i is in setup, we let Yi(t) denote

the remaining amount of time until server i would finish setup, if left uninterrupted. To be precise, Yi(t) is

set to β when server i first initiates setup, and this value decreases at rate 1 until either setup completes or

setup is canceled. For convenience, we assume, without loss of generality, that ON < s < OFF for every

possible remaining setup time s∈ (0, β]; this ensures that the detailed state Yi(t) is non-decreasing in i. As

a shorthand, we use Y = (Y1(t), Y2(t), . . . , Yk(t)) to denote the vector of detailed server states.

A state descriptor. Accordingly, a Markovian state descriptor for our system at time t is S(t) ≜

(N(t),Y (t)). Note that, since one can recover the number of jobs in service Z(t) from the detailed server

states Y (t), one could also choose the state to be (Q(t),Y (t)). Either suffices in providing a complete

description of the forward dynamics of the system. Furthermore, when discussing the steady-state distribu-

tion of, say, the number of jobs N(t), we use the notation N(∞).

Some important constants. We define some system parameters which are critical to system behavior. We

use ρ ≜ λ
µ

to refer to the load of our system, i.e., the time-average fraction of servers working on a job.

We call the offered load R≜ kρ; this is the time-average number of busy servers. To enforce stability, we

require that ρ< 1. As discussed, the symbol β refers to the fixed (Deterministic) setup time of a server.

Busy period notation. Our results can be stated more concisely with two quantities related to a busy

period of an M/M/1 queue. We give the notation below. We use T busy (n, j) to denote the expectation of the

random length of an M/M/1 busy period with arrival rate kλ, service rate kλ+µj, and which starts with

n jobs in the system. Likewise, we use Ibusy (n, j) to denote expectation of the random time integral of the

number of jobs within the M/M/1 over the same period. Explicitly, we have

T busy (n, j)≜
n

µj
(1)

and

Ibusy (n, j)≜
n

µj

[
n+1

2
+

1

1− kλ
kλ+µj

]
=

n

µj

[
n+1

2
+
R

j
+1

]
. (2)

3. Related Work

In Section 1, we discussed two works most directly related to ours, (Gandhi et al. 2013) and (Welch 1964).

Here, we briefly describe a few other works studying setup times in queueing systems.

3.1. Single Server Setup

The single server setting. Since the seminal paper of (Welch 1964) on the M/G/1/Setup, various fol-

lowup work has been devoted to extending this work to service disciplines beyond First-Come-First-Served

(Bischof 2001) and arrival processes beyond Poisson (He and Jewkes 1995, Choudhury 1998).
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Staggered setup. The first investigations into multiserver setup study the M/M/k/Setup and the

M/G/k/Setup with the additional assumption that only one server can be in setup at a time (Artalejo et al.

2005, Gandhi and Harchol-Balter 2013a,b). However, in real systems, servers can undergo the setup pro-

cess simultaneously (e.g. ten virtual machines can be booting up at the same time), meaning that the strong

results obtained for the staggered setup model are of limited practical use.

3.2. Multiserver Setup

M/M/k/Setup-Exponential: Approximations. In (Gandhi et al. 2010b), a precursor to (Gandhi et al.

2013), the authors derive a number of intuitive approximations for the average waiting time. Further, (Pender

and Phung-Duc 2016) analyzes an extended version of their model which includes customer abandonment

and time-varying arrival rates, providing an approximation for the average queue length at each point in

time. Unfortunately, unlike our results, none of these results are in closed-form, nor do they provide a bound

on the approximation error.

M/M/k/Setup-Exponential: Exact analysis. In (Gandhi et al. 2013), the authors provide a method for

computing the expectation of any function of the steady-state queue length; their method was later shown

to be analogous to the matrix analytic method (Phung-Duc 2017). As usual, though, these results are not in

closed-form; even now, it remains unknown how the average waiting time in the M/M/k/Setup-Exponential

model varies as one varies the system parameters.

Dispatching/Load-balancing. In (Mukherjee et al. 2017), the authors consider a dispatched, finite-

buffer version of the M/M/k/Setup-Exponential, for which they design TABS, an asymptotically-optimal

(in energy waste, as k→∞) load-balancing/scaling scheme. In a followup paper, (Mukherjee and Stolyar

2019), the authors extend their work to the infinite buffer case, confirming its asymptotic optimality.

Deterministic setup. Besides the lower bound of (Williams et al. 2022), a few others have investigated

multiserver systems with Deterministic setup times. In the control setting, (Hyytiä et al. 2018) considers

a dispatching version of the M/G/2/Setup-Deterministic model, building near-optimal policies for the joint

control of setup and dispatching. In (Kara 2017), the author provides a simulation-based analysis of the

M/M/k/Setup-Deterministic queue, corroborating our findings on the large gap between Exponential and

Deterministic setup systems.

Multiserver scheduling. In (Hong and Scully 2023), the authors study the performance of the Gittins

policy in the G/G/k/Setup queue and, instead of explicitly bounding the average wait as we do, they bound

the difference between Gittins’ average waiting time and the optimal average waiting time.

Policies for mitigating the harm caused by setup. Many works have considered the problem of

mitigating the energy waste and additional delay caused by setup times, often formalized in terms of

the Energy-Response-time-Product (ERP) (Gandhi et al. 2010a), the Normalized-Performance-Per-Watt

(NPPW) (Gandhi and Harchol-Balter 2011), or the energy expended given a fixed tail cutoff for response
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time (Gandhi et al. 2012). Many works study the DelayedOff policy, where a server must idle for a period

before it may turn off (Gandhi et al. 2010a,b, 2012, Pender and Phung-Duc 2016). When using DelayedOff,

the choice of which idle-but-on server receives a job matters: (Gandhi et al. 2010a) considers routing the

job to the Most Recently Busy server; (Gandhi et al. 2012) creates a ranking of all servers, always routing to

the lowest-ranked idle server. Other works (Gandhi et al. 2010a, 2011) consider utilizing sleep states, use-

ful intermediates between the “no power, long setup” off state and the “full power, no setup” on state. We

comment that the setting considered in this paper corresponds to a natural policy. But it is unclear whether

this natural policy, or any other policy, achieves an optimal tradeoff between the energy consumption and

the additional delay caused by setup times.

4. Results

Summary. We now state our three main results concerning the average queue length E [Q(∞)]: an

approximation, an upper bound, and a lower bound. Note that, by Little’s Law (Kleinrock 1975), which

states that E [Q(∞)] = kλE [TQ], our results immediately translate to results on the average waiting time

E [TQ]; see Figure 2a for an illustration. Our first main result, Approximation 1, is a simple and accurate

approximation to the average queue length E [Q(∞)]; we demonstrate its accuracy in Figure 4. Our sec-

ond main result, the upper bound of Theorem 1, is the first-ever upper bound on the average queue length

E [Q(∞)] in a multiserver system with Deterministic setup times. By contrast, our third main result, the

lower bound of Theorem 2, is only the second lower bound on the queue length E [Q(∞)]; however, improv-

ing on the lower bound of (Williams et al. 2022), we show that our bounds differ by at most a multiplicative

constant. Notably, all three results are in explicit closed-form, unlikely nearly all other results concerning

multiserver systems with setup times.

We begin by discussing Approximation 1 in Section 4.1. We then discuss the assumptions used in the

proof of our main theorems in Section 4.2. Afterwards, we state the exact forms of the upper and lower

bounds in Theorems 1 and 2 in Sections 4.3 and 4.4, respectively, whose proofs are given in Section 6 and

Appendix B, respectively. Finally, we briefly discuss the order of these bounds in Section 4.5.

4.1. Approximation: Statement and Evaluation

Approximation 1 (Approximation of the Average Queue Length) Let Capx ≜
√

π
2

. Then, if the offered

load R≜ kρ > 1, one can approximate the steady state queue length as

E [Q(∞)]≈Qapx ≜

1
2
µβ2Capx

√
R+

µβCapx
√
R

µk(1−ρ)

[
µβCapx

√
R+1

2
+ 1

1−ρ

]
β+

µβCapx
√
R

µk(1−ρ)

. (3)
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Figure 4 Simulation results demonstrating the high accuracy of Approximation 1. For each of these 9 plots, we plot the behavior

of the average waiting time as one varies the load ρ from 0 to 1, holding fixed the total number of servers k as well

as the setup time β. In each row, we hold the number of servers k constant while testing increasing values of the

setup times β. In each column, we hold the setup time β constant while increasing the number of servers. We plot

three quantities: 1) in black, the simulated average waiting time for the M/M/k/Setup-Deterministic; 2)in purple, the

predicted average waiting time of Approximation 1; and 3) the predicted average waiting time of as given by the “low

R” approximation of (4), a variation on the single-server setup result of Welch (1964). We also include, as a reference,

a dotted line illustrating the point at which the offered load R ≜ kρ = 1. Our approximation works well when the

average number of busy servers R> 1, and the “low R” approximation works well when R< 1.

Evaluation. In Figure 4, we observe that our approximation is accurate across a wide range of system

parameters, so long as the offered load R > 1, a considerable weakening of the assumptions used in our

proofs. In that sense, it serves as a testament to the strength of our approach that our resulting approximation

remains accurate all the way down to offered loads R≈ 1.

When R < 1, we find that the waiting time exhibits a “single-server bottleneck” effect, mirroring the

behavior in (Welch 1964). In particular, in the M/M/1/Setup-Deterministic, one finds in (Welch 1964) that

E [TQ] =
1

µ−λ
+
β

2

[
2+λβ

1+λβ

]
.

Taking the second term, which measures the additional wait in the system due to setup times, and using R

in place of λ
µ

, we obtain a “low R” approximation

E [TQ]≈
β

2

[
2+µRβ

1+µRβ

]
. (4)
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We include this “low R” approximation in Figure 4 and note that, when R< 1, this “low R” approximation

seems to capture the behavior of the waiting time quite well.

4.2. Assumptions.

In our theoretical analysis, in order to more simply characterize the system’s behavior, we make two assump-

tions. First, we assume that setup times are large compared to service time, i.e. the average setup time

β ≥ 100 1
µ

; this is often satisfied in practice (Gandhi et al. 2012, Mao and Humphrey 2012, Mogul and

Kompella 2015, Maheshwari et al. 2018, Hao et al. 2021). Second, we assume that the system utilizes, on

average, at least 100 servers, i.e. the offered load R≜ kρ≥ 100.

Note that the specific values within these assumptions are not strictly necessary for our analysis to go

through; these assumptions are made predominantly to simplify the expressions which arise in our analysis.

For example, in our final bound on the quantity E [L] at the end of Appendix G.6, we are left with the

expression

E [L]≥
(
1− b1√

µβR

)[(
1− 2√

R

)(√
π

2
− 1.15√

µβ
− 2e−4

)
− 1

2
√
R

]√
R.

By imposing the above constraints, we are able to reduce the above expression to

E [L]≥ 2

3

√
π

2

√
R,

which still captures the correct order-wise scaling (and even points towards the correct asymptotic behavior)

while being much easier to read.

4.3. Upper Bound: Statement

THEOREM 1 (Upper Bound on Average Queue Length). For an M/M/k/Setup-Deterministic with an

offered load R≜ kρ≥ 100 and a setup time β ≥ 100 1
µ

, the expected number of jobs in queue in steady state

is upper-bounded as

E [Q(∞)]≤ 3.6
√
µβR+2.04

ρ

1− ρ
+

4.05µβ2
√
R+ g

(
9(µβ)2R,3µβ

√
R,k(1− ρ)

)
β+ L1µβ

√
R

µk(1−ρ)

,

where the function g(x, y, z)≜ x 1
2µz

+ y
[
R
µz2

+ 3
2µz

]
and the constant L1 =

2
3

√
π
2

.

4.4. Lower Bound: Statement

THEOREM 2 (Improved Lower Bound on Average Queue Length). For an M/M/k/Setup-Deterministic

with an offered load R ≜ kρ ≥ 100 and a setup time β ≥ 100 1
µ

, the expected number of jobs in queue in

steady state is lower-bounded as

E [Q(∞)]≥
L1β

2
√
R+ Ibusy

([
L1β

√
R− (k−R)

]+
, k−R

)
2.08β+ 1

µ
F1β

√
R

k−R + 1
µ

3
2
ln(β)+ 1

µ
ln(F1D1)+

2
µ
+ 1

µ

[
D2 +

D3√
R

]
max

(
1

D1
√
µβ
, 1√

R

) ,
where L1, F1, D1, D2, and D3 are constants independent of system parameters.
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4.5. Discussion of Bounds

After simplification, our bounds become

E [Q(∞)] =c µβ
√
R+

1

1− ρ
;

where the operator =c denotes equality up to multiplicative constants; we show this explicitly in Section C.

This simplified characterization of the queue length gives us insight into how the system parameters

govern the system’s queueing behavior. The first term, µβ
√
R, scales linearly with the setup time β and

captures the effect of turning servers off and on. The second term, 1
1−ρ , dominates the first term only when

the load ρ is high enough, say in the renowned super-Halfin-Whitt regime (Halfin and Whitt 1981, Liu and

Ying 2022) where ρ= 1− γk−α with 0< γ < 1 and α > 0.5. In this case, it recovers the 1
1−ρ scaling seen

in the M/M/k without setup times.

5. Key Ideas and Techniques

We now describe our approach to analyzing the average waiting time in the M/M/k/Setup-Deterministic,

using the upper bound, Theorem 1, as a case study. To begin, we go through the first few steps in our proof,

arriving at three main lemmas. We then give a detailed explanation of the technique we have developed for

proving those lemmas, which we call the Method of Intervening Stopping Times (MIST). Throughout, we

highlight the technical challenges that arise in our approach and how we address those challenges.

5.1. Initial Steps: Applying the Renewal-Reward Theorem

5.1.1. Reduction to analyzing E [N(∞)−R].. We begin by applying the Renewal Reward theorem.

Although it is tempting to apply the theorem directly to the queue length E [Q(∞)], it simplifies the analysis

considerably if one analyzes the number of jobs E [N(∞)−R] instead. To justify this, note that, in steady-

state, the number of busy servers E [Z(∞)] =R, and that the total number of jobs in system N(t) satisfies

N(t) =Q(t)+Z(t). It follows that the average queue length

E [Q(∞)] =E [N(∞)−Z(∞)] =E [N(∞)]−R=E [N(∞)−R] .

5.1.2. Applying Renewal-Reward. Applying the Renewal Reward Theorem, for any renewal cycle,

E [N(∞)−R] =
E
[∫

cycle [N(t)−R]dt
]

E [cycle length]
=

E
[∫ X

0
[N(t)−R]dt

]
E
[∫ X

0
1dt
] , (5)

where we have set time 0 to be an arbitrary renewal point and time X to be the renewal point which

immediately follows it. To upper bound (5), it suffices to upper-bound the right side’s numerator and lower-

bound the right side’s denominator. These bounds constitute our three main lemmas; two lemmas for the

numerator (which is harder to bound) and one for the denominator. But before we can state these main

lemmas, we must first address our first technical challenge: defining the collection of renewal points X .
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(R+1)-th server turns off turns off againturns on
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Figure 5 A depiction of our decomposition of a renewal cycle into an accumulating phase and draining phase, described in

Section 5.1. During the accumulating phase, the departure rate µZ(t) ≤ µR = kλ, so that the system is transiently

unstable and a queue accumulates. During the draining phase, the departure rate µZ(t)>kλ, so that the queue drains.

5.1.3. Technical Challenge: Defining the renewal points. To define a “good” collection of renewal

points X is a non-trivial task. There are two important criteria one must consider when selecting the collec-

tion of renewal points. First, we need the length of a renewal cycle to have finite expectation. While this is

trivially satisfied in many queueing models, in our model, the presence of remaining setup times in our sys-

tem state makes this criterion non-trivial. Second, we want the renewal period to be defined in such way that

one can straightforwardly reason about the system’s behavior in between renewals. For example, we could

define our renewals as occurring when the system completely empties; this would avoid the continuous-

state-space concerns, but then one would need to reason about what happens to the system until the next

time it empties —by analogy to the M/M/k without setup, a typical renewal cycle would last exponentially

long (in k). Thus, while the “system empties” renewal definition does indeed give a simple analysis for

k= 1, for even k= 2 the analysis becomes much more difficult. We must find another way.

5.1.4. Key Idea: Renewals when the (R + 1)-th server turns off. By defining our collection of

renewal points X = {t :Z(t−) =R+1,Z(t) =R} as those moments when the (R+1)-th server is turned

off, we satisfy both criteria. By defining our renewals to occur at moments when a server is turned off,

we avoid the continuous state-space issue: any time a server shuts off, we know that there must be no

servers in setup (since we would cancel any servers in setup before canceling an idling server). Furthermore,

by specifically analyzing around the moment the (R+ 1)-th server turns off, the length of time between

renewals becomes well-controlled, in the sense that it is lower-bounded almost surely by a setup time and

upper-bounded in expectation by a quantity which we can show is “not too large.”

5.1.5. Further Benefit: A natural decomposition. Another benefit of defining a renewal cycle in this

way is that it naturally splits a renewal cycle into two parts: the first part of the cycle before the (R+1)-th

server turns on, and the second part of the cycle after it turns on; we depict this decomposition in Figure 5.

During the beginning of a cycle (when Z(t)≤R), the departure rate µZ(t) is smaller than the arrival rate,

making the system behave, in a transient sense, like a critically- or over-loaded queue. On the other hand,
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after the (R+1)-th server turns on and until the renewal cycle is over, the departure rate µZ(t) is guaranteed

to be strictly greater than the arrival rate, making the queue, on the whole, drain over time. This observation

turns out to be hugely useful in our analysis. As such, we have special names for each of these special times:

we call the time before the (R+1)-th server turns on the accumulation period, we call the moment when

the (R+1)-th server turns on the accumulation time TA, and we call the period from time TA until the cycle

ends the draining period. At times, we will also refer to these periods as phases.

5.2. Statement of Three Main Lemmas

We may now state our three main lemmas. (Note that the preconditions of Theorem 1 are implicit here.)

LEMMA 1 (Upper Bound on Integral Over Accumulation Period). Suppose the system begins at time 0

with R jobs in service and no jobs in the queue (and thus no servers in setup), and define the accumulation

time TA ≜min{t≥ 0 :Z(t) =R+1} to be the moment the (R+1)-th server turns on. Then, taking B1 =

3.6 and B2 = 1.04, one can bound the integral of the reduced number of jobs [N(t)−R] by

E
[∫ TA

0

[N(t)−R]dt
]
≤B1

√
µβR ·E [TA] +B2β

2µ
√
R.

LEMMA 2 (Upper Bound on Integral Over Draining Period). Recall that the accumulation time TA is

the first (and only) time the (R+ 1)-th server turns on during a renewal cycle, and that the next renewal

point X =min{t > TA :Z(t) =R} is simply the next time the (R+1)-th server turns off. Then,

E
[∫ X

TA

[N(t)−R]dt
]
≤ 3.01µβ2

√
R+2.04β

ρ

1− ρ
+ g

(
9(µβ)2R,3µβ

√
R,k(1− ρ)

)
where g(x, y, z)≜ x 1

2µz
+ y

[
R
µz2

+ 3
2µz

]
.

LEMMA 3 (Lower Bound on Cycle Length). Taking L1 =
2
3

√
π
2

, the renewal cycle length E [X] is

E [X]≥ β+
L1µβ

√
R

µk(1− ρ)
.

5.3. Proof of Theorem 1, assuming the Three Main Lemmas

After proving these lemmas, the result easily follows. First note that, by summing Lemmas 1 and 2,

E
[∫ X

0

[N(t)−R]dt
]
≤B1

√
µβR ·E [TA] + (B2 +3.01)µβ2

√
R+2.04β

ρ

1− ρ
+ g

(
9(µβ)2R,3µβ

√
R,k(1− ρ)

)
,

where g(x, y, z)≜ x 1
2µz

+ y
[
R
µz2

+ 3
2µz

]
.

Upon dividing by Lemma 3 and noting that a setup time β <E [TA]<E [X], we obtain

E [Q(∞)]≤B1

√
µβR+2.04

ρ

1− ρ
+

(B2 +3.01)µβ2
√
R+ g

(
9(µβ)2R,3µβ

√
R,k(1− ρ)

)
β+ L1µβ

√
R

µk(1−ρ)

. □
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Figure 6 A depiction of the stopping time decomposition of Lemma 4. In order to bound the integral E
[∫ P
T0

Ytdt
]
, we bound

the expected contribution of each random interval [Ti, Ti+1), where every Ti is a cleverly defined stopping time. This

divide-and-conquer approach features heavily in our proofs.

5.4. Key Technique: The Method of Intervening Stopping Times (MIST)

5.4.1. Technical Challenge: Applying simple bounds to a complex system. We begin by describing

the technical challenge which led to the development of the MIST method: attempting to apply simple cou-

pling bounds to a complex, dynamic system. In general, one can easily obtain simple coupling bounds on the

behavior of, e.g., the number of jobs in the system N(t) or the number of busy servers Z(t); unfortunately,

these simple bounds may only be accurate and/or applicable for a random amount of time. For example:

Suppose that at time τ the number of busy servers Z(τ) = 6 and the smallest remaining setup time in the

system is 10 seconds. Then, until either a server is turned off or 10 seconds have passed, we understand the

behavior of the number of jobs N(t) very well — in a sample path sense, it is precisely the behavior of an

M/M/1 queue, with arrival rate kλ and departure rate 6µ. Suppose, though, that by time τ +2, the system is

empty. If we continued to estimate the system behavior via the same M/M/1 queue as before, then we would

be wildly over-estimating the true system’s departure rate. If we want to keep our couplings accurate, we

need to track when the system’s behavior changes significantly, and alter our coupling accordingly.

5.4.2. Key Idea: Decompose using state-based stopping times. The Method of Intervening Stopping

Times (MIST) allows us to easily and dynamically apply these coupling arguments. Our key idea is to

break up our original long time interval into a random number of smaller, more manageable pieces. We do

this by defining intervening events, moments where the system state changes in a way that allows to easily

characterize the system’s behavior. From there, we can define a “small piece” of time as the time in between

our intervening events. For example, in this work, it can often be useful to analyze the system around time

points where the number of jobs N(t) gets large. This is useful because, in a system with setup times, if we

have enough jobs for long enough, we can afterwards guarantee that many servers are turned on.

5.4.3. Reduction to three claims. By performing this decomposition of the integral, we reduce our

initial bounding problem to showing two or three bounds. First, we must bound the integral of each of the

chunks. Often, it is useful to analyze the “initial” chunk separately from the “successive” chunks afterward.

Typically, we use martingale arguments combined with worst-case coupling arguments to prove these two

integral bounds. Next, we must show that not too many of these “successive chunks” actually occur. For
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Figure 7 A depiction of the sequence of “new lows” τj and the epochs that they define. In this case, the number of epochs

which occur is ne = 3.

this “not too many” condition, it’s often helpful to show some kind of regularity condition, e.g. if the i-

th intervening event has occurred, then the (i+ 1)-th event occurs with at most constant probability. By

formalizing our notion of intervening events using stopping times and applying some ideas from Wald’s

equation, we obtain the Intervening Stopping Time Lemma, Lemma 4.

5.5. The Intervening Stopping Time Lemma: Statement

We now state the Intervening Stopping Time Lemma, Lemma 4, deferring its proof to Section A. After-

wards, we sketch how we use MIST to prove Lemma 1, the bound on the time integral E
[∫ TA

0
[N(t)−R]

]
.

LEMMA 4 (Intervening Stopping Time Lemma). Given a starting stopping time T0, an ending stopping

time P , and a collection of intervening stopping times (Ti : i∈Z+), define the random variable F to be

such that TF ≤ P < TF+1. Now, given some time-varying random variable Yt ≥ 0 which is a function of the

underlying Markov state of the system S(t), suppose that:

1. E
[∫ min(T1,P )

T0
Ytdt

∣∣∣FT0]≤G0(S(T0)),

2. E
[∫ min(Ti+1,P )

Ti
Ytdt

∣∣∣FTi , F ≥ i
]
≤Gi+B ·E [min(Ti+1, P )−Ti|FTi , F ≥ i] +C [Ti−Ti−1],

3. and Pr (F ≥ i|FTi , F ≥ i− 1)≤ 1− pi,

where G0 is also some function of the system state, and the Gi’s, the pi’s, C, and B are all constants

(possibly depending on system parameters). Then one can bound the time integral of Yt from T0 to P by

E
[∫ P

T0

Ytdt
]
≤E [G0 (S(T0))] +Pr (F > 0)

∞∑
j=1

Gj

j∏
i=2

(1− pi)+ (B+C) ·E [P −T0] .

5.6. Example: Application to Accumulation Period Upper Bound (Lemma 1)

5.6.1. Application of Lemma 4.

Specification Step. We begin our bound on the integral over the accumulation period with an application

of the Intervening Stopping Time Lemma, Lemma 4. To apply our new lemma, we must first specify all the

necessary stopping times: the initial time T0, the final time P , and the intervening times Ti. In this case, we



Authors’ names blinded for peer review
Article submitted to Operations Research 19

of course take T0 = 0 and P = TA. For the intervening times Ti, we choose a sequence which allows us to

lower bound the departure rate of our system. In particular, we take Tj = τj where the j-th epoch start τj is

τj ≜min{t≥ 0 :N(t)≤R− j} ;

in other words, the moments when the number of jobs N(t) reaches a new minimum value or “new low.”

We call the period [τj,min(τj+1, TA)) the j-th epoch, and say epoch j occurs whenever τj < TA. We then

let the random variable ne denote the number of epochs that occur, i.e. we take F = ne.

The reduced problem. With this decomposition, understanding the behavior of the accumulation phase

reduces to understanding the behavior of each epoch. The beauty in our construction is that the behavior of

N(t) within an epoch is much more constrained: within epoch j, the departure rate µZ(t) of our system is

both lower-bounded by µ(R− j) and upper-bounded by µR. We use this observation together with various

coupling arguments to show the three necessary preconditions of Lemma 4. To prove these preconditions,

we actually need to apply Lemma 4 again; see Section 6.3 for details.

6. Proof of Theorem 1’s Three Main Lemmas

As shown in Section 5.3, to prove Theorem 1 it suffices to prove the following lemmas:

1. Lemma 1, an upper bound on the reward integral over the accumulation phase,

2. Lemma 2, an upper bound on the reward integral over the draining phase, and

3. Lemma 3, a lower bound on the length of our renewal cycle.

Before we continue, we first give a formal system construction, then prove some useful coupling claims.

6.1. Construction

We now discuss how we formally construct this system using Poisson processes; being explicit here will

prove useful when we make coupling arguments in the future.

The arrival and departure processes. We take the number of jobs that have arrived at time t to be ΠA(t),

where ΠA is a Poisson process of rate kλ. In a slight abuse of notation, we let ΠA([a, b]) denote the number

of arrivals that occur in the interval [a, b]; we apply the same extension to all other counting processes

mentioned here. We set the potential departure process of, say, server i to be Πi(t), where Πi is a Poisson

process of rate µ. A potential departure from server i only “counts” if server i is busy when that potential

departure occurs, i.e., if the number of busy serversZ(t)≥ i at the time. Thus, the total number of departures

from our system by time t is, taking integrals with respect to the Poisson processes Πi as counting processes,

D(t)≜
k∑
i=1

∫ t

0

1{Z(s)≥ i}dΠi(s).



Authors’ names blinded for peer review
20 Article submitted to Operations Research

The number of busy servers Z(t). To find the number of busy servers Z(t), one could count the number

of setup completion events that have occurred so far and the number of server shutoffs that have occurred

so far; this description is a bit difficult to work with. Alternatively, one can see from the initial description

of setup dynamics that server i is on at time t if and only if the total number of jobs N(s) ≥ i for all

s∈ [t−β, t], where one should recall that β is the setup time. An easier description of Z(t) follows:

Z(t) =min

(
k, min

s∈[t−β,t]
N(s)

)
.

A departure operator. We can extend our departure process D(t) to a departure operator D [f(s)] (I)
which takes a function f(s) ∈ {0,1, . . . , k} defined on some interval I and computes the number of depar-

tures that would occur in that interval provided that the number of busy servers Z(s) = f(s), i.e.

D [f(s)] ((a, b])≜
k∑
i=1

∫ b

a

1{f(s)≥ i}dΠi(s).

Note that the total number of departures can now be written as D(t) =D [Z(s)] ([0, t]).

6.2. Three Coupling Claims

We now describe three useful claims applied throughout the proof. The first, we will state and prove imme-

diately. The latter two, we prove later, in Section G.

6.2.1. Basic coupling claim: Maintaining an initial relation.

CLAIM 1 (Basic Coupling). Suppose that we have two processes N1 and N2 with an initial relation

N1(a)≤N2(a), where the behavior of each process is governed, for all times s from a up to some stopping

time τ , by the equation

Nj(s)≜Nj(a)+ΠA ((a, s])−D [Zj(x)] ((a, s]) , for j ∈ {1,2}.

Furthermore, suppose that the first system’s number of busy servers Z1(s)≥ Z2(s) for all times s ∈ [a, τ ].

Then, for all s∈ [a, τ ], the relation is maintained, i.e. N1(s)≤N2(s).

Proof. We show equivalently that N2(s)−N1(s)≥ 0. Applying the definitions of N1 and N2,

N2(s)−N1(s) =N2(a)−N1(a)+ [D [Z1(x)] ((a, s])−D [Z2(x)] ((a, s])]

≥ [D [Z1(x)] ((a, s])−D [Z2(x)] ((a, s])]

=

k∑
i=1

∫ s

a

1{Z1(x)≥ i}dΠi(x)−
k∑
i=1

∫ s

a

1{Z2(x)≥ i}dΠi(x)

=

k∑
i=1

∫ s

a

[
1{Z1(x)≥ i}−1{Z2(x)≥ i}

]
dΠi(x).

Since Z1(x)≥Z2(x), the integrand
[
1{Z1(x)≥ i}−1{Z2(x)≥ i}

]
≥ 0; the claim follows. □
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6.2.2. Statement of remaining coupling claims

High-level explanation. This claim leads nicely into a couple more claims. Both are concerned with

bounding a quantity involving a general “down-crossing” time. In particular, our analysis will begin at a

stopping time τ and will “end” at the down-crossing time dgen, where dgen ≜min{t≥ 0 :N(t+ τ)≤ h} is

the length of time it takes for the number of jobs N(t) to become lower than some given threshold h. The

first claim, Claim 2, uses a coupling argument to bound the expected integral of N(t) from some arbitrary

time τ until N(t) drops below some pre-defined threshold h, provided that one has a lower bound on the

number of busy servers Z(t) over that period. The second claim, Claim 3, uses a related argument to bound

the probability that N(t) drops below some threshold h within some amount of time ℓ, given that one has

bounds on Z(t) over the relevant period. We defer the proof of these claims to Sections E.1 and E.2.

CLAIM 2 (Coupling Integral Bound). Let τ be some stopping time and dgen be the next down-crossing as

described in Section 6.2.2. Suppose that, at time τ , we have a lower bound on the number of busy servers

over a period, i.e. we know that the number of busy servers Z(t)≥R− j, for all t ∈ [τ, τ +min(ℓ, dgen)]

and for some non-negative j. Then we have the following bound on the integral over this time period:

E

[∫ τ+min(dgen,ℓ)

τ

[N(t)−h]dt

∣∣∣∣∣Fτ
]
≤ ℓ · [N(τ)−h]

+
+

1

2
µjℓ2.

CLAIM 3 (Coupling Probability Bound). Let τ be some stopping time and dgen be the next down-crossing

as described in Section 6.2.2. We consider two cases.

In the first case, suppose that we have a lower bound on the number of busy servers Z(t) over some

length ℓ interval starting at time τ , i.e. the busy servers Z(t)≥R− j, for all t ∈ [τ, τ +min(ℓ, dgen)] and

for some non-negative j. Then, we can bound the threshold-crossing probability by

Pr (dgen < ℓ|Fτ )≥ 2Φ

(
−

[
N(τ)−h+µjℓ√
ℓ(2kλ−µj)

])
− 2

3
√
ℓ(2kλ−µj)

.

In particular, if N(τ)−h= c1
√
µβR, then the probability Pr (dgen < ℓ|Fτ )≥ 2Φ

(
− c1√

2

)
− 1

100
.

In the second case, suppose that we instead have the upper bound on Z(t) ≤ R during this interval

instead. Then,

Pr (dgen < ℓ|Fτ )≤ 2Φ

(
−
[
N(τ)−h√

2ℓkλ

])
− 2

3
√
2kλℓ

.

As before, if N(τ)−h= c
√
µβR, then the probability Pr (dgen < ℓ|Fτ )≤ 2Φ

(
− c√

2

)
+ 1

100
.

6.3. Proof of Lemma 1, Upper Bound on Integral Over Accumulation Period

We prove this result via two applications of the Intervening Stopping Time Lemma, Lemma 4. To apply this

decomposition lemma, there are two broad steps. First, we must specify a starting time (T0), an ending time

(P ), a series of intervening stopping times (Ti), the process (Yt), and an counting variable (F ). Second, we

must prove that the three preconditions of the lemma hold, given these specifications.
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6.3.1. First application of Lemma 4, at the epoch level.

Definition of (τj). We define the sequence of stopping times (τj : j = 0,1, . . . ,R) as τj ≜

min{t > 0 :N(t)≤R− j} , i.e., τj is the first time there are onlyR−j jobs within the system. Note that, by

definition, τ0 = 0. We call the period
[
τj,min(τj+1, TA)

)
the j-th epoch, and say epoch j occurs whenever

τj <TA. We then let ne denote the number of epochs which occur in a given renewal cycle.

Specification step. Since we are interested in bounding E
[∫ TA

0
[N(t)−R]dt

]
, we let our starting stop-

ping time be T0 = 0, our ending stopping time be P = TA, our intervening stopping times be Tj = τj , the

process of interest Yt =N(t)−R and our counting variable be F = ne. Let the quantity

p
(j)
rise ≜Pr

(
max

t∈[τj ,min(τj+1,TA)
N(t)≥R+C3

√
µβR

∣∣∣∣∣ne ≥ j

)
(6)

be the probability that the total number of jobs N(t) exceeds R+C3

√
µβR during epoch j.

Required claims. From here, we can apply Lemma 4 after showing the following claims:

CLAIM 4 (Upper Bound on the Probability of Another Epoch). Recall that the total number of epochs

ne ≜max{j ∈Z+ : τj <TA}. Then, taking C4 = 0.98, we have Pr (ne ≥ j+1|ne ≥ j)≤ 1−C4p
(j)
rise.

CLAIM 5 (Upper Bound on the Integral Over an Epoch). Let τj ≜ min{t≥ 0 :N(t)≤R− j}, TA ≜

min{t≥ 0 :Z(t) =R+1}, and let ne ≜max{i∈Z+ : τi <TA}. Then,

E

[∫ min(τj+1,TA)

τj

[N(t)−R]dt

∣∣∣∣∣ne ≥ j

]
≤B1

√
µβR ·E [min (τj+1, TA)− τj|ne ≥ j] +C2β

2µjp
(j)
rise,

where B1 = 3.6 and C2 =
1

2·0.98 > 0.511.

6.3.2. Proof of Lemma 1 assuming Claims 4 and 5. Before going further, we show how to complete

the proof of Lemma 1, assuming the two prior claims. Applying Lemma 4, we find that

E
[∫ TA

0

[N(t)−R]dt
]
≤B1

√
µβR ·E [TA] +C2β

2µ

R∑
j=1

jp
(j)
rise

j−1∏
i=1

(
1−C4p

(j)
rise

)
≤B1

√
µβR ·E [TA] +

C2

C4

β2µ

[
R∑
j=1

jC4p
(j)
rise

j−1∏
i=1

(
1−C4p

(j)
rise

)]

=B1

√
µβR ·E [TA] +

C2

C4

β2µ

[
R∑
j=1

j∏
i=1

(
1−C4p

(j)
rise

)]
,

where we have used the “expectation as a sum of tails” trick. We now apply the following claim:

CLAIM 6 (Bound on the Probability of an Up-crossing p(j)rise). Let p(j)rise be the probability that the total

number of jobs N(t) exceeds R+C3

√
µβR during epoch j defined in (6). Then, for any epoch j ≥A5

√
R,

we have p(j)rise ≥ 0.99 A5√
R
.
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Continuation: Proof of Lemma 1 assuming Claims 4, 5, and 6. We defer the proof of Claim 6 to

Section G.3. Applying the claim’s result, we find that

R∑
j=1

j∏
i=1

(
1−C4p

(j)
rise

)
≤

R∑
j=1

(
1− 0.99C4A5√

R

)[j−A5
√
R]+

≤
∞∑
j=1

(
1− 0.99C4A5√

R

)[j−A5
√
R]+

. (7)

Bounding this as a Geometric sum, we obtain

(7) =A5

√
R+

∞∑
j=0

(
1− 0.99C4A5√

R

)j
=A5

√
R+

1

0.99C4A5

√
R.

Returning to our original inequality, we obtain that

E
[∫ TA

0

[N(t)−R]dt
]
≤B1

√
µβR ·E [TA] +

C2

C4

(
A5 +

1

0.99C4A5

)
β2µ

√
R.

Noting that A5 = 1 and taking B2 ≜ 1.04> C2
C4

(
A5 +

1
0.99C4A5

)
, we finish the proof of Lemma 1. □

6.3.3. Proof of Claim 4, Upper Bound on Probability of Another Epoch.

Rewriting the claim. And so, assuming the preconditions of Lemma 4 (Claims 4 and 5) as well as the

helper claim 6, we have proven Lemma 1. We thus begin proving Claim 4. We begin by rewriting the

probability of another epoch occurring as

Pr (ne ≥ j+1|ne ≥ j) = 1−Pr (ne = j|ne ≥ j) = 1−Pr (TA < τj+1|ne ≥ j) .

It thus suffices to show a bound on the probability that the accumulation phase ends in epoch j:

Pr (TA < τj+1|ne ≥ j)≥C4p
(j)
rise. (8)

Lower bound based on up-crossing and down-crossing times. To show (8), we analyze a particu-

lar sequence of events which results in the accumulation phase ending in the current epoch, i.e. TA <

τj+1. Specifically, we define the up-crossing time u=min
{
t > τj :N(t)≥R+C3

√
µβR

}
and the down-

crossing time d=min{t > u :N(t)≤R}. We consider the event where (1) the up-crossing occurs during

the accumulation phase (u< TA) and (2) the accumulation phase ends before the next down-crossing occurs

(d> TA). Symbolically, we have (at the end, recalling that p(j)rise is the probability of an up-crossing occurs)

(8) ≥Pr (u< TA <d|ne ≥ j) = Pr (d> TA|u< TA)Pr (u< TA) = Pr (d> TA|u< TA)p(j)rise.

Development of conditional probability. To bound the conditional probability Pr (d> TA|u< TA), we

condition on the filtration at time u, then make a coupling argument. To begin, note that, if the number

of jobs N(t) does not fall to R before the (R + 1)-th server finishes setting up, then the accumulation

time TA occurs exactly when the (R+1)-th server finishes, i.e. the accumulation time TA = u+ YR+1(u).
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Figure 8 A depiction of the up-crossings and down-crossings defined in Section 6.3.4. In this example, we see that the number

of up-crossings in epoch 3 is n(3)
e = 2 and that, in this case, epoch 3 ends when epoch 4 begins (i.e. at time τ4).

Furthermore, the number of busy servers Z(t) ≤ R at any time during the accumulation phase t < TA.

Applying a basic coupling argument (Claim 1), we have a lower bound on N(t) in the coupled process

Ñ(t)≜N(u)+ΠA ((u, t])−D [R] ((u, t]) ,

for any time t ∈ [u,TA]. Let d̃ ≜ min
{
t > u : Ñ(t)≥R

}
be the analogous down-crossing time in the

coupled system. Since the coupled Ñ(t) is a lower bound, the coupled down-crossing time d̃≤ d. Thus,

Pr (d> TA|Fu, u < TA) = Pr (d> u+YR+1(u)|Fu, u < TA)≥Pr
(
d̃ > u+YR+1(u)

∣∣∣Fu, u < TA) . (9)

Analyzing the coupled probability. Continuing, the probability that
{
d̃≥ ℓ

}
is decreasing in ℓ. Thus,

(9) ≥Pr
(
d̃ > u+β

∣∣∣Fu, u < TA)=Pr
(
d̃−u> β

)
≥ 1− 2Φ

(
−C3√

2

)
− 2

3
√
µβR

≥ 0.98,

where in the final inequalities we have applied both the down-crossing probability bound of Claim 3 and

our assumptions. Taking C4 ≜ 0.98, we have the inter-epoch probability bound of Claim 4. □

6.3.4. Proof of Claim 5, Upper Bound on the Integral Over an Epoch. We now prove Claim 5, the

upper bound on the time integral over an epoch. We do this via another application of Lemma 4 —first

specifying the intervening times, then completing the proof, then proving that the preconditions hold.

Definition of up-crossings and down-crossings. Let the 0-th down-crossing time in epoch j occur at time

τj , i.e. let d(j)0 ≜ τj. Next, define the first up-crossing in epoch j as the first time during epoch j that the

total number of jobs N(t) exceeds R+C3

√
µβR, i.e.

u
(j)
1 ≜min

{
t > τj :N(t)≥R+C3

√
µβR

}
.

From here, define i-th down-crossing in epoch j and the i+1-th up-crossing in epoch j as

d
(j)
i ≜min

{
t≥ u

(j)
i :N(t)≤R

}
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and

u
(j)
i+1 ≜min

{
t≥ d

(j)
i :N(t)≥R+C3

√
µβR

}
,

respectively; we visualize these definitions in Figure 8. We say the i-th up-crossing occurs if u(j)
i <

min(TA, τj+1) and let nu ≜ max
{
i≥ 0 : u

(j)
i <min(τj+1, TA)

}
be the random number of up-crossings

which occur in epoch j. We call the interval
[
d
(j)
i ,min

(
u
(j)
i ,min(TA, τj+1)

))
the i-th rise, and the interval[

u
(j)
i ,min

(
d
(j)
i ,min(TA, τj+1)

))
the i-th fall. Note that, if the i-th up-crossing occurs, then, by definition,

di < τj+1; this means that the i-th fall can always be written as
[
ui,min(TA, di)

)
. For readability, we fix

our epoch of interest and freely omit the superscript j on our up-crossings and down-crossings.

Specification step. With up-crossings and down-crossings defined, we are now ready to specify our appli-

cation of the IST Lemma, Lemma 4. We define our starting time as T0 = τj = d0, our ending time as

P =min(TA, τj+1), our intervening sequence as (ui)
∞
i=1, and our counting variable as F = nu.

Required Claims. From here, in order to apply Lemma 4, we must show the following three claims:

CLAIM 7 (Upper Bound on Integral Until First Up-crossing). Taking B1 = 3.6, the integral until u1 is

E

[∫ min(u1,min(TA,τj+1))

d0

[N(t)−R]dt

∣∣∣∣∣nu ≥ j

]
≤B1

√
µβR ·E [min (u1,min(TA, τj+1))− τj|nu ≥ j] .

CLAIM 8 (Upper Bound on Integral Between Up-crossings). The integral between up-crossings ui is

E

[∫ min(ui+1,min(TA,τj+1))

ui

[N(t)−R]dt

∣∣∣∣∣nu ≥ i

]
≤B1

√
µβR ·E [min (ui+1,min(TA, τj+1))−ui|nu ≥ i]

+
1

2
β2µj.

CLAIM 9 (Upper Bound on Probability of Another Up-crossing). Recall that p(j)rise is the probability that

the number of jobs (N(t) ≥ C3

√
µβR at some point during epoch j, given that epoch j occurs. Then,

Pr (nu > 0) = p
(j)
rise, and, for all counts i≥ 1 and p2 = 0.98, we have Pr (nu ≥ i+1|nu ≥ i)≤ 0.02 = 1−p2.

6.3.5. Proof of Claim 5, assuming Claims 7, 8, and 9. Once again, before we move on to proving

these claims, we show that they indeed suffice to prove Claim 5. By Lemma 4, taking C2 ≜ 0.5
p2
,

E

[∫ min(TA,τj+1)

τj

[N(t)−R]dt

∣∣∣∣∣ne ≥ j

]
≤B1

√
µβR ·E [min (TA, τj+1)− τj|ne ≥ j]

+ p
(j)
rise0.5β

2µj

∞∑
i=1

(1− p2)
i−1

=B1

√
µβR ·E [min (TA, τj+1)− τj|ne ≥ j] + p

(j)
rise

0.5

p2
β2µj. □

Proofs of Claims 7, 8, and 9. All that remains to be proven are our three aforementioned claims.
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Proof of Claim 7: Upper Bound on Integral until First Up-crossing. Proving this claim is quite simple. In

fact, we now prove a far more general claim, that the integral from a down-crossing to the next up-crossing∫ min(ui,min(TA,τj+1))

di

[N(t)−R]dt≤C3

√
µβR · [min (TA, τj+1)− di] . (10)

To see this, note that, at any point between a down-crossing and up-crossing, the total number of jobs N(t)

must be strictly less than R+C3

√
µβR. Apply this to the 0-th down-crossing and we have the claim. □

Proof of Claim 8: Upper Bound on Integral Between Up-crossings. This proof is a bit more involved.

We separate the interval
[
ui,min(ui+1,min(TA, τj+1))

)
into the i-th fall and the i-th rise, as discussed

previously. For the rising portion, we can simply apply the simple bound from (10). For the falling portion,

we apply the integral coupling claim, Claim 2. In particular, note that Z(t)≥R− j until time τj+1 and that

the interval [ui,min(di, TA)) is equivalent to the interval [ui,min(di, ui+YR+1(ui))). Applying Claim 2,

E

[∫ min(di,TA)

ui

[N(t)−R]dt

∣∣∣∣∣S(ui)
]
≤ 1

2
β2µj+ [N(ui)−R] ·YR+1(ui)

=
1

2
β2µj+C3

√
µβR ·YR+1(ui).

By our analysis in the proof of Claim 4, we note that the remaining setup time YR+1(ui) ≤ min(di, TA)

with probability at least p2 ≤minFui Pr (di <TA|Fui , nu ≥ i). By Markov’s inequality,

YR+1(ui)≤
1

p2
E [min (di, TA)−ui|S(ui)] .

Combining our bounds on the rises and falls and taking B1 =
C3
p2

, we have Claim 8. □

Proof of Claim 9: Upper Bound on Probability of Another Up-Crossing. We now proceed to our final

claim, concerning the up-crossing probabilities Pr (nu > 0) and Pr (nu ≥ i+1|nu ≥ i). To begin, we first

note that, since the first up-crossing occurs precisely at the moment thatN(t) exceedsR+C3

√
µβR during

epoch j, one has p(j)rise =Pr(u1 <min(TA, τj+1)) = Pr (nu > 0).

To prove the second part of the claim, first observe that an (i+1)-th up-crossing can only occur if an i-th

down-crossing occurs, i.e. Pr (nu ≥ i+1|nu ≥ i)≤Pr (di <TA|nu ≥ i) .

To bound this conditional probability, we can apply a previous result. Recall the proof of the inter-epoch

probability bound (Claim 4). In (8), we have already argued a bound on the conditional probability that the

first down-crossing occurs, in a state-independent manner. The bound derived there thus also applies here:

Pr (di <TA|nu ≥ i) = 1−Pr (di >TA|nu ≥ i)≤ 1−C4.

Taking p2 ≜C4 = 0.98, we have bounded the probability of another up-crossing (Claim 8). □

6.4. Proof of Lemma 2, Upper Bound on Integral Over Draining Period.

To prove this lemma, we again make use of Lemma 4. We proceed through the usual two-step process, first

defining the stopping time sequence we will analyze over, then proving the preconditions of the lemma.
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Definition of the upward visits υ(up)
i and downward visits υ(down)

i . Recall that the draining phase begins

at time TA. Let MB ≜ min
(
k−R,

√
R)
)

be a specially-set analysis threshold. Let the stopping time

v
(down)
1 ≜min{t≥ TA :N(t)<R+MB} be the first time the number of jobs N(t) drops below R+MB ,

and recursively define

v
(up)
i ≜min

{
t≥ v

(down)
i :N(t)≥R+MB

}
and

v
(down)
i+1 ≜min

{
t≥ v

(up)
i :N(t)<R+MB

}
.

6.4.1. Application of Lemma 4. Applying Lemma 4, we take our initial stopping time to be the accu-

mulation time TA, our final stopping time to be the end of the renewal cycle X , our intervening stopping

times to be the downward visits v(down)
i , and our counting index to be nb.

Required claims. To apply Lemma 4, we need to show is the usual three claims: a bound on the initial

integral, a bound on the continuing integral, and a bound on the probability.

CLAIM 10 (Upper Bound on Integral Until First Downward Visit). Let g(x, y, z) ≜ x 1
2µz

+

y
[
R
µz2

+ 3
2µz

]
. Then, one can bound the integral immediately after time TA with

E

[∫ v
(down)
1

TA

[N(t)−R]dt

]
≤
[
β+

1

µ

][
3µβ

√
R+max

(√
R,

ρ

1− ρ

)]
+

2

µ
ln

(
3
µβ√
R

max

(√
R,

ρ

1− ρ

))
+ g

(
(9(µβ)2R,3µβ

√
R,k(1− ρ)

)
+β

ρ

1− ρ
.

CLAIM 11 (Upper Bound on Integral Between Downward Visits). One can bound the integral between

consecutive downward visits by

E

[∫ v
(down)
i+1

v
(down)
i

[N(t)−R]dt

∣∣∣∣∣Fv(down)
i

]
≤ 1

µMB

[
max

(√
R,

ρ

1− ρ

)
+14+µβ

√
R+2b1

√
µβR+ b2

√
R

]
CLAIM 12 (Upper Bound on Probability of Another Downward Visit). One can bound the probability

of another downward visit occurring by

Pr (nb ≥ i+1|nb ≥ i)≤ 1

MB

. (11)

6.4.2. Proof of Lemma 2 assuming Claims 10, 11, and 12. Simplifying the first bound further,

E

[∫ v
(down)
1

TA

[N(t)−R]dt

]
≤
[
β+

3

µ

][
2.9µβ

√
R+max

(√
R,

ρ

1− ρ

)]
+ g

(
9(µβ)2R,3µβ

√
R,k(1− ρ)

)
+β

ρ

1− ρ

≤ 1.03β

[
2.91µβ

√
R+

ρ

1− ρ

]
+ g

(
9(µβ)2R,3µβ

√
R,k(1− ρ)

)
+β

ρ

1− ρ

≤ 3µβ2
√
R+2.03β

ρ

1− ρ
+ g

(
9(µβ)2R,3µβ

√
R,k(1− ρ)

)
,
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where we have bounded ln(x)/x < 0.1 for values x > 100, noted that max(x, y)≤ x+ y, and done some

upwards rounding. Simplifying the “continuing integral” term, we have

E

[∫ X

v
(down)
1

[N(t)−R]dt

]
≤ 1

Claim 12
· [Claim 11]

=
1

µ

[
max

(√
R,

ρ

1− ρ

)
+14+µβ

√
R+2b1

√
µβR+ b2

√
R

]
≤ 1

µ

[
µβ

√
R

(
1+

2b1√
µβ

+
b2
β

+
14

µβ
√
R

]
+

ρ

1− ρ

]
≤ 1

µ

[
1.6µβ

√
R+

ρ

1− ρ

]
.

Combining these two pieces, we obtain, as desired,

E
[∫ X

TA

[N(t)−R]dt
]
≤ 3.01µβ2

√
R+2.04β

ρ

1− ρ
+ g

(
9(µβ)2R,3µβ

√
R,k(1− ρ)

)
. □

Precursor: The “Wait-Busy” idea. As such, to complete our proof it suffices to show Claims 10, 11,

and 12. To prove these claims, we make heavy use of the following idea.

CLAIM 13 (Wait Busy Claim). Let τ be some stopping time, let the number of jobs N(τ) = R+ h, and

define ns (h) ≜ min{h,k(1− ρ)}. Let the down-crossing dgen ≜ min{t > 0 :N(τ + t) =R+h− 1} . If

Z(τ)≥R, then

E
[∫ τ+dgen

τ

[N(t)− (R+h− 1)]dt
∣∣∣∣Fτ]≤ YR+ns(h)(τ)+g

(
1+2µRE

[
min

(
YR+ns(h)(τ), dgen

)]
,1, µns (h)

)
,

(12)

where the function g(x, y, z)≜ x 1
2µz

+ y
[
R
µz2

+ 3
2µz

]
.

Furthermore,

E

[∫ v
(down)
1

TA

[N(t)−R]dt

∣∣∣∣∣FTA
]
≤
[
β+

1

µ

][
E [N (TA)−R] +

R

MB

]
+

2

µ
ln

(
E [N (TA)−R]

MB

)
(13)

+ g
(
E
[
[N (TA)−R]

2
]
+2E [N (TA)−R] ,E [N (TA)−R] , k(1− ρ)

)
.

Intuition. We defer the proof of Claim 13 until Section 6.4.2. For now, we give some brief intuition

for how the bound is derived and how we use it in our proof. Essentially, we can consider performing the

following procedure at time τ : First, watch the system for β time. If the number of jobs ever dips below

R+ h during this watching period, we can end our integral immediately. If the number of jobs N(t) never

dips below R+ h during this watching period, then we know for sure that we have at least min(R+h,k)

servers on at time τ + Ymin(R+h,k)(τ), since we have continually had at least R+ h servers either busy or

setting up during that period. Moreover, since we only turn off servers when there isn’t work for them to

do, those servers will stay on until the number of jobs N(t) dips below R+h; in other words, they will stay

on until time dgen. The proof of the claim follows along essentially the same lines, formalizing things and

performing computations using coupling and martingales.
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6.4.3. Proof of Claim 10: Bound on Integral Until First Visit. We return to proving our claims. The

proof of this claim is simple; it is essentially rolled into the proof of Claim 13. From here, it suffices to

apply the following claim, substituting in and simplifying constants:

CLAIM 14 (Upper Bound on E [N(TA)]). Recall that TA ≜min{t > 0 :Z(t) =R+1}. Then,

E [N(TA)−R]≤ F1µβ
√
R

(
1+

F2√
µβ

)
≤ 2.9µβ

√
R

and

E
[
(N(TA)−R)

2
]
≤ F 2

1 (µβ)
2R

(
1+

F2√
µβ

)2

+2µβR≤ 8.4(µβ)2R+2µβR

where F1 = 2.12 and F2 = 3.645.

6.4.4. Proof of Claim 11: Bound on Integral Between Visits. To prove Claim 11, we break the inte-

gral into two parts: from the down-crossing v(down)
i to the up-crossing v(up)

i , and vice-versa.

First part: from v
(down)
i to v(up)

i . To bound the integral from the down-crossing to the next up-crossing,

we first make the simple observation that

∫ min
(
v
(up)
i ,X

)
v
(down)
i

[N(t)−R]dt≤
[
min

(
v
(up)
i ,X

)
− v

(down)
i

]
·MB, (14)

since v(up)
i is the next time N(t)≥R+MB . To bound E

[
min

(
v
(up)
i ,X

)
− v

(down)
i

∣∣∣F
v
(down)
i

]
, we couple the

system to an infinite-server M /M /∞ queue at time v(down)
i , and note that the coupled up-crossing time

T̃(R+MB−1)→(R+MB) + v
(down)
i ≥ v

(up)
i ≥min

(
v
(up)
i ,X

)
.

Since MB ≤
√
R, from standard results on the M /M /∞ (reproduced in Section F.4), , we have that

MBE
[
min

(
v
(up)
i ,X

)
− v

(down)
i

∣∣∣F
v
(down)
i

]
≤MB

b2

µ
√
R

=
1

µMB

b2
M2

B√
R

≤ 1

µMB

b2
√
R.

Second part: from v
(up)
i to v(down)

i+1 . From v
(up)
i onwards, we use the “wait-busy” bound. Applying the “Wait

Busy” Claim (Claim 13) with h=MB , we obtain

E

[∫ v
(down)
i+1

v
(up)
i

[N(t)−R]dt

∣∣∣∣∣Fv(up)
i

]
≤ β+ g

(
1+2µRE

[
min

(
β, v

(down)
i+1 − v

(up)
i

∣∣∣F
v
(up)
i

)]
,1,MB

)
+MBE

[
min

(
β, v

(down)
i+1 − v

(up)
i

∣∣∣F
v
(up)
i

)]
.

To bound the conditional expectation of E
[
min

(
β, v

(down)
i+1 − v

(up)
i

)∣∣∣F
v
(up)
i

]
, we make our usual coupling

argument. Define a coupled system M/M/1 queue with departure rate µR, and let ˜dgen be the length of its
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busy period. It suffices to bound E
[
min

(
˜dgen, β

)]
, for the coupled relative down-crossing time ˜dgen. From

standard results on simple random walks (Claim 21), we have E
[
min

(
˜dgen, β

)]
≤ b1

√
µβ

µ
√
R

+ 6
µR

, giving

E

[∫ v
(down)
i+1

v
(up)
i

[N(t)−R]dt

∣∣∣∣∣Fv(up)
i

]
≤ 1

µMB

[
R

MB

+2

]
+β+

[
b1
√
µβ

µ
√
R

+
6

µR

](
MB +

R

MB

)
=

1

µMB

[
R

MB

+2+µβMB +
(
M2

B +R
)[b1√µβ√

R
+

6

R

]]
≤ 1

µMB

[
max

(√
R,

ρ

1− ρ

)
+14+µβ

√
R+2b1

√
µβR

]
,

where in the last line we used MB ≤
√
R; combining these two parts gives Claim 11. □

6.4.5. Proof of Claim 12, Upper Bound on the Probability of Another Visit. To see (11), we first

note that, if there is another upcrossing, then there must be another downcrossing. As such, it suffices to

upper bound Pr
(
v
(up)
i <X

∣∣∣v(down)
i

)
. To do this, we note that the number of busy servers Z(t)≥R. From

Claim 1, it thus suffices to bound the corresponding probability in the coupled system with exactly R

busy servers. But this is simply the probability that a simple random walk started at W (0) =MB − 1 hits

W (t) =MB before it hits W (t) = 0. Classically, this probability is 1
MB

; this proves the claim, and thus

Lemma 2. □

6.5. Proof of Lemma 3: Lower Bound on the Cycle Length.

Preliminaries. The proof of this lemma is much simpler than the others. Before describing our

strategy, we first state some preliminaries. Recall the definition of the start of the j-th epoch τj ≜

min{t≥ 0 :N(t)≤R− j} , that we call the period
[
τj,min(τj+1, TA)

)
the j-th epoch, and the we say

epoch j occurs if τj < TA. Now, say epoch j is long if it lasts longer than a setup time β; note that such

an epoch must exist, since servers can only turn on during long epochs, and a server must turn on before

the accumulation phase ends at time TA. Let L ≜ min{j ∈ {0,1,2, . . . ,R} : min (τj+1, TA)− τj >β} be

the index of the first long epoch. Note that, although the random time τL is not a stopping time (we do not

know how long an epoch will last when the epoch starts), the first moment we can identify epoch L, the

random time τL + β, is a stopping time. Moreover, we know that τL + β < TA. From here, one sees that

E [X] =E [τL+β] +E [X − (τL+β)]≥ β+E [X − (τL+β)] . To complete the proof, it suffices to show

E [X − (τL+β)]≥ L1µβ
√
R

µk(1− ρ)
. (15)

6.5.1. Proof of (15): Lower Bound on the Remaining Cycle Length. To show (15), we first show we

can bound an analogous quantity in a coupled process, then appeal to standard results on the M/M/1 queue.
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Defining the coupled process Ñ(t). To define the coupled process, note that the number of busy servers

Z(t)≤ k. It follows from Claim 1 that, for any time t≥ τL+β, the coupled process

Ñ(t)≜N (τL+β)+A ((τL+β, t])−D [k] ((τL+β, t])

satisfies Ñ(t)≤N(t).

Using the coupled process to bound E [X − τL+β]. We now use this process to bound E [X − τL+β].

Recall that the end of the renewal cycle X ≜ min{t > 0 :Z(t−) =R+1,Z(t) =R} occurs when the

(R + 1)-th server turns off. It is useful to view X in a different way: since the accumulation time TA is

the moment when the (R + 1)-th server turns on, we also know that the end of the renewal cycle X =

min{t > TA :N(t)≤R} is the first moment after time TA that the number of jobs N(t)≤R. Furthermore,

since the time τL+β happens before any server could possibly turn on, the time τL+β < TA. Denoting the

end of the coupled renewal as X̃ as the first moment the coupled process Ñ(t)≤R, we have

X̃ ≜min
{
t > τL+β : Ñ(t)≤R

}
≤min{t > τL+β :N(t)≤R} ≤min{t > TA :N(t)≤R}=X.

Bounding the end of coupled renewal E [X − τL+β]. To bound the quantity E [X − τL+β], we condi-

tion on the filtration at time τL+β and use standard results on the M/M/1 busy period. Note that, since the

departure rate of the coupled system is fixed at µk, the period
[
X̃ − τL+β

]
is precisely the length of an

M/M/1 busy period with 1) arrival rate kλ, 2) departure rate kµ, and 3) started by [N (τL+β)−R]
+ jobs.

It follows that E [X − (τL+β)|FτL+β]≥
[N(τL+β)−R]+

µk(1−ρ) . Taking expectations, applying Jensen’s and results

from the lower bound ((21) and (18)), we obtain, proving (15), Lemma 3, and Theorem 1 simultaneously,

E [X − (τL+β)]≥ [E [N (τL+β)−R]]
+

µk(1− ρ)
≥ µβE [L]

µk(1− ρ)
≥ L1µβ

√
R

µk(1− ρ)
. □

7. Conclusion and Future Work

Summary. In this work, we provided a comprehensive characterization of the average waiting time within

the M/M/k/Setup-Deterministic. In particular, we proved the first multiplicatively-tight upper and lower

bounds, respectively, on the average waiting time. By combining our upper and lower bounds, we also

obtained an approximation which we demonstrate to be highly accurate. These results significantly advance

our understanding of how setup times affect queueing systems beyond the prevalent Exponential setup

model, providing new insights into capacity provisioning in systems with setup times.

7.1. Future Work.

Tail of Response Time. Our work leaves open many possible directions for future research. One such

possibility is studying other aspects of system performance in the M/M/k/Setup-Deterministic. For context,

in this work, we only analyze the average waiting time of a job in the system. However, in many applications,
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a customer’s quality of service is determined by more advanced metrics like the tail of their waiting time,

e.g. the fraction of jobs which are served within 100 ms of their arrival. While our analysis lends itself most

easily to studying the average waiting time, it’s conceivable that, with the right selection of stopping time

and martingales, our results could be extended to higher moments and possibly even to a direct analysis of

the tail.

Other natural policies. Another possible expansion on this work is studying other natural policies. For

example, consider the following variation on the policy studied in this paper: instead of turning a server

off instantly when there is no work for that server to do, we allow the server to sit idle for, say, 5 seconds

before turning off. One would imagine that such a policy would have a lower average waiting time and a

higher power consumption than this paper’s setup policy. Moreover, one would anticipate that the tradeoff

between the waiting time and the power consumption could be tuned by changing the amount of allowed

idle time γ; at γ = 0, we recover the policy studied in this paper, and as γ→∞, we recover the “Always

On” policy. This class of policies, often referred to as the DelayedOff class of policies, have been studied

extensively in the Exponential setup model due to their tunability, ease of implementation, and excellent

empirical performance Gandhi et al. (2012), Pender and Phung-Duc (2016), Gandhi et al. (2010a), Gandhi

and Harchol-Balter (2011); it would be a great contribution to extend our knowledge of these policies to

settings with Deterministic setup times.

Tradeoff between waiting time and power. Another important avenue of study lies in characterizing the

fundamental tradeoff between average waiting time and average power consumption. One point on the

waiting-v.s.-power Pareto curve is clear: to obtain the minimum possible waiting time, one should keep

all k servers on all the time. However, all the other points on the optimal tradeoff curve are unknown;

furthermore, even if we knew a given (waiting time, power consumption) pair was feasible, it would be

entirely unclear how we should go about achieving it. For example, it’s conceivable that the DelayedOff

class of policies mentioned previously could perform near-optimally as one varies the “idle time” parameter

γ. A more principled understanding of the optimal tradeoff between waiting time and power consumption

could allow us to directly derive a policy which achieves this optimal tradeoff, and could grant us greater

insight into how to design more performant setup systems in the practical setting.

More general setup distributions. Lastly, we note that our results might be generalized to setup distri-

butions beyond Deterministic. A promising step would be the establishment of closed form bounds for the

Exponential setup time model; note that no closed-form result exists for the Exponential model, excluding

the infinite server result of Gandhi et al. (2010b). With the establishment of an Exponential result, it seems

likely that our arguments could be used to obtain a result for a Hyperexponential setup system, or even

bootstrapped into a full phase-type result. Another way to generalize our setup model is to study a system

where setup times take on two possible values (a short setup or a long setup); whether a setup is long or
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short (and how the setup time of a server changes over time) could be used to model various real-world

scenarios, e.g. where variable data loading times or intermittent network congestion. By generalizing our

setup model in these ways, we could greatly expand the practical utility of our results and gain even deeper

insight into what fundamentally governs the performance of systems with setup times.
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Appendix A: Proof of Lemma 4, the Intervening Stopping Time (IST) Lemma.

LEMMA 4 (Intervening Stopping Time Lemma). Given a starting stopping time T0, an ending stopping

time P , and a collection of intervening stopping times (Ti : i∈Z+), define the random variable F to be

such that TF ≤ P < TF+1. Now, given some time-varying random variable Yt ≥ 0 which is a function of the

underlying Markov state of the system S(t), suppose that:

1. E
[∫ min(T1,P )

T0
Ytdt

∣∣∣FT0]≤G0(S(T0)),

2. E
[∫ min(Ti+1,P )

Ti
Ytdt

∣∣∣FTi , F ≥ i
]
≤Gi+B ·E [min(Ti+1, P )−Ti|FTi , F ≥ i] +C [Ti−Ti−1],

3. and Pr (F ≥ i|FTi , F ≥ i− 1)≤ 1− pi,

where G0 is also some function of the system state, and the Gi’s, the pi’s, C, and B are all constants

(possibly depending on system parameters). Then one can bound the time integral of Yt from T0 to P by

E
[∫ P

T0

Ytdt
]
≤E [G0 (S(T0))] +Pr (F > 0)

∞∑
j=1

Gj

j∏
i=2

(1− pi)+ (B+C) ·E [P −T0] .

A.1. Proof of Lemma 4.

We begin with a manipulation of the integral, finding∫ P

T0

Ytdt =

∫ min(T1,P )

T0

Ytdt+
∞∑
i=1

∫ min(Ti+1,P)

min(Ti,P )

Ytdt

=

∫ min(T1,P )

T0

Ytdt+
∞∑
i=1

1Ti<P

∫ min(Ti+1,P)

Ti

Ytdt.

Applying linearity of expectation and the tower property, we find that

E
[∫ P

T0

Ytdt
]

=E

[
E

[∫ min(T1,P )

T0

Ytdt

∣∣∣∣∣FT0
]]

+

∞∑
i=1

E

[
E

[
1Ti<P

∫ min(Ti+1,P)

Ti

Ytdt

∣∣∣∣∣FTi
]]

=E

[
E

[∫ min(T1,P )

T0

Ytdt

∣∣∣∣∣FT0
]]

+

∞∑
i=1

E

[
1Ti<PE

[∫ min(Ti+1,P)

Ti

Ytdt

∣∣∣∣∣FTi
]]
.
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Noting that the event {Ti <P}= {F ≥ i}, we have

=E

[
E

[∫ min(T1,P )

T0

Ytdt

∣∣∣∣∣FT0
]]

+

∞∑
i=1

E

[
1F≥iE

[∫ min(Ti+1,P)

Ti

Ytdt

∣∣∣∣∣FTi
]]

≤E [G0 (S(T0))] +

∞∑
i=1

E [1F≥i (Gi+B ·E [min(Ti+1, P )−Ti|S(Ti), F ≥ i] +C [Ti−Ti−1])]

=E [G0 (S(T0))] +B ·E [P −T0] +CE [TF −T0] +

∞∑
i=1

GiPr (F ≥ i)

≤E [G0 (S(T0))] +B ·E [P −T0] +CE [P −T0] +

∞∑
i=1

GiPr (F ≥ i).

Applying our final assumption to bound Pr (F ≥ i),

Pr (F ≥ i) = Pr (F > 0)

i∏
j=2

Pr (F ≥ j|F ≥ j− 1)

= Pr (F > 0)

i∏
j=2

E
[
Pr
(
F ≥ j

∣∣F ≥ j− 1,FTj−1

)]
≤Pr (F > 0)

i∏
j=2

E [1− pj]

= Pr (F > 0)

i∏
j=2

(1− pj).

Applying this final result, we find

E
[∫ P

T0

Ytdt
]
≤E [G0 (S(T0))] +Pr (F > 0)

∞∑
j=1

Gj

j∏
i=2

(1− pi)+ (B+C) ·E [P −T0] ,

as desired. □

Appendix B: Proof of the Improved Lower Bound, Theorem 2.

B.1. The New Lower Bound: Proof Outline.

Basic Structure. We prove Theorem 2 via the MIST method. As noted in Section 5, we begin by applying

the Renewal-Reward theorem to the queue length Q(t), defining our renewal points as those points in time

where the (R+1)-th server turns off. Defining time 0 to be one of these points, and defining the cycle time

X ≜min{t > 0 :Z(t−) =R+1,Z(t) =R} as the next point, this gives

E [Q(∞)] =
E
[∫ X

0
Q(t)dt

]
E [X]

.

To obtain our lower bound, it suffices to lower bound the numerator and upper bound the denominator of

this fraction, i.e. lower bound E
[∫ X

0
Q(t)dt

]
and upper bound E [X]. The time integral lower bound is

handled by Lemma 5, which we state at the end of this section. The cycle length upper bound is split into

two separate lemmas: Lemma 6 upper bounds the length of the cycle’s “first part” and Lemma 7 bounds the

length of its “second part”.
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Decomposition into phases. However, before we state or prove these lemmas, we first discuss the decom-

position of the renewal cycle [0,X) into two parts; one might think of this as a “miniature” application of

the MIST method. We begin by noting that the end of the renewal cycle is moment when the (R+ 1)-th

server turns off. Since the (R+1)-th server is off at the start of a renewal period, we can break the renewal

cycle into two phases based on whether the (R+ 1)-th server has turned on yet. Formally, we define the

accumulation time TA ≜min{t > 0 :Z(t) =R+1} as the first moment that the (R+1)-th server turns on.

From here, we can focus separately on the accumulation phase, from time 0 to time TA, and the draining

phase, from time TA to time X .

With this decomposition, we can now state our main lemmas. Their proofs follow in sequence afterwards.

LEMMA 5 (Lower bound on Cycle Integral). Define busy period integral Ibusy (x, z) as

Ibusy (x, z)≜
x

µz

[
x+1

2
+

1

1− kλ
kλ+µz

]
=

x

µz

[
x+1

2
+
R

z

]
.

For the time integral of the queue length Q(t) over a renewal cycle, we have

E
[∫ X

0

Q(t)dt
]
≥ 1

2
µβ2L1

√
R+ Ibusy

([
µβL1

√
R− (k−R)

]+
, k−R

)
.

LEMMA 6 (Upper bound on Accumulation Phase Length). Recall that

TA ≜min{t > 0 :Z(t)≥R+1}

is the amount of time until the (R+1)-th server turns on. Then we can bound the expectation E [TA] by

E [TA]≤ e
1

24Rβ

(√
1+

1

2Rβ

)[
1+

e
1

12R

√
2µβ

]
β ≤ 1.08 ∗β.

LEMMA 7 (Upper bound on Draining Phase Length). Recall that the accumlation time

TA ≜min{t > 0 :Z(t)≥R+1}

is the amount of time until the (R+1)-th server turns on and the cycle time X is the moment when it turns

off. Then, one can bound E [X −TA] by

E [X −TA]≤ β+
1

µ

F1β
√
R

k−R
+

1

µ

3

2
ln(β)+

1

µ
ln(F1D1)+

2

µ
+

[
D2 +

D3√
R

]
max

(
1

D1

√
µβ

,
1√
R

)
,

where F1, D1, D2, and D3 are constants not depending on system parameters.

B.2. Proof of Lemma 5: Lower Bound on Cycle Integral.

B.2.1. Lemma 5 Proof Outline
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Basic Strategy. First, we split the first phase [0, TA) into epochs, where epoch i begins when the number

of busy servers Z(t) first drops to R − i, and an epoch ends either when the next epoch starts or when

the first phase ends. Our goal will be to analyze a specific “significant” epoch. In particular, we say that

an epoch is long if it lasts for longer than a setup time β. Because the accumulation phase ends when the

(R+1)-th server turns on, at least one epoch must be long. We use L to denote the index of the first long

epoch. From here, we argue via a martingale/coupling argument that the expected time integral over the first

β time in epoch L is at least 1
2
β2E [L]. To bound the integral afterwards, we couple the behavior of the total

number of jobs N(t) to the queue length in an M/M/1 queue with arrival rate kλ and departure rate kµ.

Formalization. Define the stopping time τi ≜min{t≥ 0 :N(t)≤R−u} as the beginning of epoch i.

We say that the epoch occurs is τi < TA, and define the end of epoch i as γi ≜min(τi+1, TA) the moment

when either epoch i+1 begins or when the first phase ends. If epoch i occurs, we say it is long if γi−τi ≥ β.

Let L ≜min{i∈N : γi− τi ≥ β} be the index of the first long epoch. It suffices to show two claims; we

state and prove them in sequence.

B.3. Lower Bound on Integral until τL+β.

We show the following claim.

CLAIM 15. Let L be the index of the first long epoch. Then,

E
[∫ τL+β

0

Q(t)dt
]
≥ 1

2
µβ2L1

√
R, (16)

where L1 is some absolute constant.

Claim 15 Proof Strategy. First, we show that the initial integral is bounded by

E
[∫ τL+β

0

Q(t)dt
]
≥ 1

2
µβ2E [L] . (17)

Afterwards, we give a bound on E [L], showing that

E [L]≥L1

√
R. (18)

Proof of (17), Bound in terms of E [L].

To show (17), we first condition on whether L≥ i, giving

E
[∫ τL+β

0

Q(t)dt
]
=

∞∑
i=0

E

[∫ min(τi+β,τi+1)

τi

Q(t)dt1L≥i

]

=

∞∑
i=0

E

[∫ min(τi+β,τi+1)

τi

Q(t)dt

∣∣∣∣∣Fτi
]
Pr (L≥ i).
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To further develop this conditional expectation, we note that during the interval [τi,min(τi+β, τi+1)),

the system must have exactly Z(t) = R − i busy servers running, meaning that Q(t) = N(t)− (R − i).

Defining a coupled process Q̃(t) as

Q̃(t) =A(τi, t)−D [R− i] (τi, t) ,

we see that Q(t) and Q̃(t) coincide during the interval in question. Moreover, one can redefine the stopping

time γ = τi+1 as min
{
t > τi : Q̃(t) =−1

}
. Noting that Q (min (γ, t)) = −1 for any time t > γ, we find

that∫ min(τi+β,τi+1)

τi

Q(t)dt=
∫ min(τi+β,τi+1)

τi

Q̃(t)dt

=

∫ min(τi+β,τi+1)

τi

Q̃ (min (t, τi+1))dt+
∫ τi+β

min(τi+β,τi+1)

(
Q̃ (min (t, τi+1))+ 1

)
dt

=

∫ τi+β

τi

Q̃ (min (t, τi+1))dt+ [β−min(β, τi+1 − τi)]

≥
∫ τi+β

τi

Q̃ (min (t, τi+1))dt.

Taking the conditional expectation at time τi, we find

E
[∫ τi+β

τi

Q̃ (min (t, τi+1))dt
∣∣∣∣Fτi]= ∫ τi+β

τi

E
[
Q̃ (min (t, τi+1))

∣∣∣Fτi]dt.

Noting that VL(t) = Q̃(t)− µi [t− τi] is a martingale, and that min(t, τi+1) is an almost-surely bounded

stopping time, we have that

Q̃(τi) = VL(τi) = 0

=E [VL (min (t, τi+1))|τi]

=E
[
Q̃ (min (t, τi+1))

∣∣∣Fτi]−µiE [min (t, τi+1)|Fτi ] .

Since

E [min (t, τi+1)|Fτi ]≥ t ·Pr (τi+1 − τi ≥ t)≥ t ·Pr (τi+1 − τi ≥ β) = tPr (L= i|L≥ i) ,

we have

Pr (L≥ i)E

[∫ min(τi+β,τi+1)

τi

Q(t)dt

∣∣∣∣∣L≥ i

]
≥Pr (L≥ i)E

[∫ τi+β

τi

Q̃ (min (t, τi+1))dt
∣∣∣∣L≥ i

]
≥
∫ τi+β

τi

µitPr (L= i)

= µ
β2

2
iPr (L= i)

Summing across all i, we obtain (17).
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B.3.1. Proof Sketch for (18), bound on E [L]. We defer the full proof of this to Section G.6, and for

now give a proof sketch.

We prove (18) by first showing that

Pr (L> j|L≥ j)≥
(
1− j

R

)(
1− b1√

µβR

)
,

where b1 = 2√
π

. Next, we show that this implies that, for any δ ∈ (0,1) and any j < δR,

Pr (L> j)≥
(
1− b1√

µβR

)j+1

e−
j(j+1)

2R
1

1−δ .

From here, we use the sum of tails formula E [L] =
∑∞

j=0Pr (L> j) to show

E [L]≥
(
1− b1√

µβR

)([√
π

2
(1− δ)− 1.15(1− δ)√

µβ

]√
R− 1

2
− 2(1− δ)

δ
e−R

δ2

1−δ

)
.

Choosing δ= 2√
R

then noting that µβ ≥ 100 and R≥ 100 gives the result.

B.4. Lower Bound on Integral after τL+β.

To finish our lower bound on the integral, we now show the following claim.

CLAIM 16. Let L be the index of the first long epoch. Then,

E
[∫ X

τL+β

Q(t)dt
]
≥ Ibusy

([
µβL1

√
R− (k−R)

]+
, k−R

)
(19)

where L1 is some absolute constant.

Claim 16: Proof Strategy. First, we show that the remaining integral is bounded by

E
[∫ X

τL+β

Q(t)dt
]
≥ Ibusy

(
[E [N(τL+β)]− k]

+
, k−R

)
. (20)

Then, we use martingales again to show that

E [N (τL+β)]≥R+µβE [L] . (21)

Applying (18), our bound on E [L], we obtain the result.

B.4.1. Proof of (20), Bound in terms of E [N(·)]. To prove (20), we make a simple coupling argument.

Let ηk ≜min{t≥ τL+β :N(t)≤ k}. Since the draining phase starts at TA ≥ τL + β and the end of the

cycleX =min{t≥ TA :N(t)≤R}, we know thatX ≥ ηk. Moreover, we know the number of busy servers

Z(t)≤ k; it follows by Claim 1 that we can define Ñ(t) as

Ñ(t)≜N (τL+β)+A (τL+β, t)−D [k] ((τL+β, t))
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and have Ñ(t) ≤ N(t) for any t > τL + β. Even further, we can defined a coupled hitting time η̃k ≜

min
{
t > τL+β : Ñ(t)≤ k

}
which must happen before ηk. In other words,

∫ X

τL+β

Q(t)dt≥
∫ ηk

τL+β

Q(t)dt

≥
∫ ηk

τL+β

[N(t)− k]dt

≥
∫ η̃k

τL+β

[
Ñ(t)− k

]
dt.

This final term is just the time integral of the number of jobs in system over a M/M/1 busy period started by

[N (τL+β)− k]
+ jobs, where jobs arrive at rate kλ and depart at rate kµ. Accordingly, we have

E
[∫ X

τL+β

Q(t)dt
]
≥E

[
Ibusy

(
[N (τL+β)− k]

+
, k−R

)]
≥ Ibusy

(
E [N (τL+β)− k]

+
, k−R

)
≥ Ibusy

(
E
[
[N (τL+β)−R− (k−R)]

+
]
, k−R

)
,

where in the last two lines we have applied Jensen’s inequality. □

B.4.2. Proof of (21), Bound on E [N(·)]. To bound E [N(τL+β)], we condition on the value of L, then

make a martingale argument.

E [N(τL+β)] =

R∑
i=0

E [N(τi+β)1L=i]

=

R∑
i=0

E [N(τi+β)1L=i,L≥i]

≥
R∑
i=0

Pr (L≥ i)E [N(τi+β)1L=i|L≥ i].

Continuing with this conditional expectation,

E [N(τi+β)1L=i|Fτi ]

=E
[
N(τi+β)1τi+β<τi+1

∣∣Fτi]
=E

[
[N(τi+β)− (R− (i+1))]1τi+β<τi+1

∣∣Fτi]+(R− i− 1)Pr (τi+β < τi+1|Fτi)

=E [N(min (τi+β, τi+1))− (R− (i+1))|Fτi ] ++(R− i− 1)Pr (τi+β < τi+1|Fτi)

= 1+µiE [min (β, τi+1 − τi)] + (R− i− 1)Pr (τi+β < τi+1)

≥ 1+µiβPr (τi+1 − τi ≥ β)+ (R− i− 1)Pr (τi+β < τi+1)

= 1+µiβPr (L= i|L≥ i)+ (R− i− 1)Pr (L= i|L≥ i) . (22)
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Summing across i, we find

E [N(τL+β)] =

R∑
i=0

Pr (L≥ i) ((22))

= (1+E [L]) + (µβE [L]) + (R−E [L]− 1)

=R+µβE [L] ,

as desired. □

Combining Claims 15 and 16, we obtain a lower bound on E
[∫ X

0
Q(t)dt

]
, proving Lemma 5.

B.5. Proof of Lemma 6: Upper Bound on the Accumulation Time E [TA].

Defining a coupling. To prove Lemma 6, we first note that, during the accumulation phase, we have two

bounds on the number of busy servers Z(t): it must be less than the total number of jobs N(t) and it must

be less than R; the former because every busy server must be working on a job, and the latter because

otherwise the accumulation phase would be over. Thus, we can define a coupledM/M/R system for which

the number of jobs Ñ(t) in the coupled system is always at least the number of jobs N(t) in the original

system.

How we use the coupling. To use this coupled process to bound E [TA], recall that the accumulation point

TA is the first time the (R+ 1)-th server turns on. Accordingly, one can also think of this as the first time

that there has been at least R+1 jobs in the system for β time. Thus, if we define a coupled accumulation

point T̃A ≜min
{
t≥ β : mins∈[t−β,t) Ñ(t)≥R+1

}
, then we know T̃A ≥ TA. In other words, it suffices to

bound E
[
T̃A

]
.

General Strategy. We bound E
[
T̃A

]
using the MIST method of Lemma 4. As such, we define a few

stopping times, then list the preconditions/claims that we will satisfy to complete the proof of Lemma 6.

Definition of γ and α. Let the initial cycle-downcrossing occur at α0 ≜ 0 and iteratively define the

upcrossings γ and downcrossings α as

γi ≜min
{
t≥ αi : Ñ(t)≥R+1

}
and

αi+1 ≜min
{
t≥ γi : Ñ(t)≥R+1

}
.

Application of Lemma 4, the IST Lemma. Applying Lemma 4 using 0 = α0 as our starting point, the

coupled accumulation point T̃A as our ending point, our test function as Yt = 1, and the cycle-upcrossings

(αi) as our intervening stopping times, we now must prove that

E [γi−αi|nα ≥ i]≤ 1

µ
e

1
12R

√
1+

1

R

√
2π√
R

≤ c3

µ
√
R
, (23)
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E
[
min

(
T̃A, αi+1

)
− γi

∣∣∣nα ≥ i
]
≤ b1

√
β

µR
+

6

µR
, (24)

and

Pr (nα ≥ i+1|nα ≥ i)≤ 1− b1√
2
e
− 1

3(µ2Rβ−1)
1√

µ2Rβ+2
≤ 1− b1c4√

µRβ
, (25)

where b1 ≜
√

2
π

, c3 = 1.001
√
2π, and c4 = 0.499.

Completion of Proof, assuming (23), (24), and (25). Applying Lemma 4, one finds that

E
[
T̃A

]
=

∞∑
i=0

E
[
min

(
T̃A, αi+1

)
−αi

∣∣∣nα ≥ i
]
Pr (nα ≥ i)

≤
[

c3

µ
√
R

+
b1
√
β√

µR
+

6

µR

]√
µRβ

b1c4

=
1

µ

[
c3
b1c4

√
µβ+

1

c4
β+

6

b1c4

√
µβ

R

]
.

B.5.1. Proof of (23): Upper bound on initial up-crossing time. To prove (23), we note that, since our

coupled system is an M/M/R, the expected time E [γi−αi|nα ≥ i] is simply the expected passage time

from state R to (R + 1) in an M /M /R ( and equivalently an M /M /R/(R + 1), an M /M /R which can

contain only R+1 jobs. Solving, one finds that

E
[
TR→(R+1)

]
≤E

[
T(R+1)→(R+1)

]
=

1

µ(R+1)

1

πR+1

=
1

µ(R+1)

∑R+1

i=0
Ri

i!

RR+1

(R+1)!

≤ 1

µ(R+1)
eR

(R+1)!

RR+1

≤ 1

µ(R+1)
eR
e

1
12(R+1)

√
2π(R+1)(R+1)R+1e−(R+1)

RR+1
(26)

= e
1

12(R+1)
1

µ

√
2π

√
R+1

R

(
1+

1

R

)R
e−1

≤ 1

µ
e

1
12(R+1)

√
1+

1

R

√
2π√
R

(27)

≤ 1

µ
1.006

√
2π√
R

≜
c3

µ
√
R
,

where in (26) we have applied Stirling’s approximation and in (27) we have used that R≥ 100.
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B.5.2. Proof of (24): Bound on time between up-crossings. To bound the expected time

E
[
min

(
T̃A, αi+1

)
− γi

∣∣∣nα ≥ i
]
, we first note that, if γi+β ≤ αi+1, then T̃A = γi+β. Likewise, if γi+β >

αi+1, then T̃A > αi+1. It follows that, given that nα ≥ i, the time min
(
T̃A, αi+1

)
= min(β+ γi, αi+1).

Thus, we have that

E
[
min

(
T̃A, αi+1

)
− γi

∣∣∣nα ≥ i
]
=E [min (β,αi+1 − γi)|nα ≥ i] =

∫ β

0

Pr (αi+1 − γi > s|nα ≥ i)ds.

We continue by bounding this tail probability. To begin, note that, while Ñ(t) stays above R + 1, the

dynamics of Ñ are precisely that of a critically-loaded M /M /1 queue with arrival rate and departure rate

equal to kλ. The tail probability we are interested in bounding is precisely the probability that a busy period

(started with 1 job) in such a system lasts longer than s time. Applying Claim 20, one finds that, for any

t≥ 3
µ2R

,

Pr (αi+1 − γi > s|nα ≥ i)≤ b1

(
1√
µ2Rs

+
b2

(µ2Rs)3/2

)
.

Integrating, we find that∫ β

0

Pr (αi+1 − γi > s|nα ≥ i)ds≤ 3

µ2R
+
b1√
2

∫ β

3
µ2R

1√
µ2Rs

+
b2

(µ2Rs)3/2
ds

≤ 3

µ2R
+
b1√
2

[√
2β

µR
+ b2

√
2

3

1

µR

]

= b1

√
β

µR
+

(
3

2
+ (b1 +2.5)

√
2

3

)
1

µR

≤ 2√
π

√
β

µR
+

6

µR
.

□

B.5.3. Proof of (25): Bound on probability of another γ up-crossing. To prove (25), it suffices to note

that, upon conditioning on the filtration at γi, the probability Pr (nα ≥ i+1|nα ≥ i) is simply the probability

that a busy period in a critically-loaded M/M/1, with arrival and departure rate equal to µR, ends before β

time has passed. Applying Claim 20, one finds that this is

Pr (nα ≥ i+1|nα ≥ i)≥ 1− b1√
2
e
− 1

3(µ2Rβ−1)
1√

µ2Rβ+2
.

□

B.6. Proof of Lemma 7: Upper Bound on the Remaining Cycle Time E [X −TA].

We now prove the upper bound on E [X −TA]. We make use of the “wait-busy” idea from Section 6.4.2 as

well as our main tool, Lemma 4. As such, we begin by defining some stopping times.
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Definition of v(down)
i and v

(up)
i . Recall that the draining phase begins at time TA. Let ML ≜

min
(
k−R,max

( √
R

D1
√
β
,1
))

be a specially-set analysis threshold. Let the stopping time v
(down)
1 ≜

min{t≥ TA :N(t)<R+ML} be the first time the number of jobs N(t) drops below R+ML, and recur-

sively define

v
(up)
i ≜min

{
t≥ v

(down)
i :N(t)≥R+ML

}
and

v
(down)
i+1 ≜min

{
t≥ v

(up)
i :N(t)<R+ML

}
.

Specification Step. Now, we apply Lemma 4 using the accumulation point TA as our initial point, the

cycle end X as our ending point, the constant function Yt = 1 as our test function, and the draining-

downcrossing points
(
v
(down)
i

)
as our intervening points; we use nζ to count the number of intervening

points. To complete the proof, we must show that the following claims:

E
[
v
(down)
1 −TA

]
≤ β+

1

µ

F1β
√
R

k−R
+

1

µ

3

2
ln(β)+

1

µ
ln(F1D1), (28)

E
[
min

(
X,v

(down)
i+1

)
− v

(down)
i

∣∣∣nζ ≥ i
]
≤ D2

µ
√
R

+
D3

µR
+

2

µML

(29)

Pr (nζ ≥ i+1|nζ ≥ i)≤ 1

ML

. (30)

Completion of Proof assuming (28), (29), and (30). Before proving the claims, we now prove the lemma.

It suffices to give a bound on E
[
X − v

(down)
1

]
; applying Lemma 4 gives

E
[
X − v

(down)
1

]
≤ML

[
D2

µ
√
R

+
D3

µR
+

2

µML

]
=

2

µ
+

[
D2 +

D3√
R

]
max

(
1

D1

√
µβ

,
1√
R

)
.

B.6.1. Proof of (28): Upper bound on time until first downward visit. To bound E
[
v
(down)
1 −TA

]
, we

make a coupling argument then apply basic results on M/M/1 busy periods. Moreover, instead of proving

(28) directly, we first show a more general claim.

CLAIM 17. For ML ≤ j ≤N(TA)−R, define ηj as the first time after TA that N(t) ≤ R+ j. Note that

this means that ηN(TA) = TA and ηML
= v

(down)
1 . Then we have the following bound:

E
[
ηML

− ηj
∣∣Fηj]≤ YR+j(ηj)+

1

µ

j∑
i=ML

1

min (i, k−R)
.

Afterwards, we complete the proof by noting that [N(TA)− k]
+ ≤ [N(TA)−R], taking expectations,

applying Jensen’s inequality to the minimum function and the ln(·) (which is concave), using the bound on

E [N(TA)−R] from Claim 14, then letting h=ML.
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Proof of Claim 17. We prove Claim 17 by induction. In the base case, suppose that j =ML+1. Note that

at time ηML+1, the numbers of jobsN(ηML+1 =R+ML+1 and the remaining time until the (R+ML+1)-

th server turns on is YR+ML+1 (ηML+1). As such, we can simply wait until either that server turns on, in

which case we can analyze the system as an M/M/1 busy period with departure rate µmin(R+ML+1, k),

or the number of jobsN(t) drops belowR+ML+1 on its own. In other words, (using j here to save space)

E
[
ηj−1 − ηj

∣∣Fηj]≤ YR+j (ηj)+
E
[
[N (ηj +YR+j (ηj))− (R+(j− 1))]1ηj−1>ηj+YR+j(ηj)

∣∣∣Fηj]
µmin(j, k−R)

.

Now, we reframe the expectation as an expectation up to a stopping time. We note that, if ηj−1 > ηj +

YR+j (ηj), then we have that

N (ηj +YR+j (ηj)) =N (min (ηj +YR+j (ηj) , ηj−1)) .

Likewise, if ηj−1 ≤ ηj +YR+j (ηj), then

R+ j− 1 =N (ηj−1) =N (min (ηj +YR+j (ηj) , ηj−1)) .

Using this and applying a simple coupling argument, one sees that

E
[
[N (ηj +YR+j (ηj))− (R+(j− 1))]1ηj−1>ηj+YR+j(ηj)

∣∣∣Fηj]
=E

[
N (min (ηj +YR+j (ηj) , ηj−1))− (R+ j− 1)

∣∣Fηj]
≤N (ηj)− (R+ j− 1) = 1.

Thus, we find that

E
[
ηj−1 − ηj

∣∣Fηj]≤ YR+j (ηj)+
1

µmin(j, k−R)
.

Inductive case. The inductive case proceeds in much the same way, except now, if N(t) does drop below

R+ j “early”, then we can factor in the time that has elapsed in the value of YR+j(ηj). In particular, note

that, since the (R+ j)-th server would have already turned on,

E
[
ηML

− ηj
∣∣Fηj]1ηj≥ηj+1+YR+j+1(ηj+1) ≤

1

µ

j∑
i=ML

1

µmin(i, k−R)
1ηj≥ηj+1+YR+j+1(j+1).

It follows that

E
[
ηML

− ηj
∣∣Fηj]≤ YR+j (ηj)1ηj<ηj+1+YR+j+1(ηj+1) +

1

µ

j∑
i=ML

1

µmin(i, k−R)
.

Now, we note that

YR+j (ηj)1ηj<ηj+1+YR+1+j(ηj+1) = [YR+j (ηj)+ ηj − ηj]1ηj<ηj+1+YR+1+j(ηj+1)

= [YR+j (ηj+1)+ ηj+1 − ηj]1ηj<ηj+1+YR+1+j(ηj+1)

≤ [YR+j+1 (ηj+1)+ ηj+1 − ηj]1ηj<ηj+1+YR+1+j(ηj+1)

= [YR+j+1 (ηj+1)+ ηj+1 − ηj]
+
,
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so that we find

E
[
ηML

− ηj
∣∣Fηj]≤ [YR+j+1 (ηj+1)+ ηj+1 − ηj]

+
+

1

µ

j∑
i=ML

1

µmin(i, k−R)
.

Finally, we note that

E
[
ηj − ηj+1

∣∣Fηj+1

]
≤E

[
min(ηj − ηj+1, YR+j+1 (ηj+1))

∣∣Fηj+1

]
+

1

µmin(j+1, k−R)
.

Summing these final two expressions gives the inductive result, proving Claim 17.

Using Claim 17. Thus, we obtain that, using Hi to denote the i-th harmonic number,

E
[
v
(down)
1 −TA

∣∣∣FTA]≤ β+
1

µ

[N(TA)− k]
+

k−R
+

1

µ

[
Hmin(N(TA)−R,k−R) −HML

]
≤ β+

1

µ

[N(TA)−R]
+

k−R
+

1

µ
ln

(
min(N(TA)−R,k−R)

ML

)
.

Taking expectations and applying Jensen’s inequality twice, we find

E
[
v
(down)
1 −TA

∣∣∣FTA]≤ β+
1

µ

F1µβ
√
R

k−R
+

1

µ
ln

(
F1µβ

√
R

ML

)

≤ β+
1

µ

F1µβ
√
R

k−R
+

1

µ
ln

 min
(
F1µβ

√
R,k−R

)
min

(
max

(
1,

√
R

D1
√
β

)
, k−R

)


≤ β+
1

µ

F1µβ
√
R

k−R
+

1

µ
ln
(
F1D1β

3/2
)

= β+
1

µ

F1µβ
√
R

k−R
+

1

µ

3

2
ln (β)+

1

µ
ln (F1D1) . □

B.6.2. Proof of (29): Upper Bound on Time between Consecutive Downward Visits. To

bound the expectation E
[
min

(
v
(down)
i+1 ,X

)
− v

(down)
i

∣∣∣F
v
(down)
i

]
, we split the interval into two parts,[

min
(
v
(up)
i ,X

)
− v

(down)
i

]
and

[
v
(down)
i+1 − v

(down)
i

]
.

To bound the expectation of the first quantity, it suffices to note that, if we couple the system to an

M/M/∞, the coupled number of jobs Ñ(t) will reachR+ML only after the original system. Using Claim 22

to bound this passage time, we thus know that

E
[
min

(
v
(up)
i ,X

)
− v

(down)
i

∣∣∣F
v
(down)
i

]
≤E

[
min

(
T
M/M/∞
(R+ML−1)→(R+ML)

+ v
(down)
i ,X

)
− v

(down)
i

∣∣∣F
v
(down)
i

]
≤E

[
T
M/M/∞
(R+ML−1)→(R+ML)

]
≤ D2√

R
.

To bound the expectation of the second quantity, we provide two bounds. First, we again make use of the

“wait-busy” idea; as we argued in the proof of (28),

E
[
v
(down)
i+1 − v

(up)
i

∣∣∣F
v
(up)
i

]
≤E

[
min

(
v
(down)
i+1 − v

(up)
i , β

)∣∣∣F
v
(up)
i

]
+

1

µML

.



Authors’ names blinded for peer review
48 Article submitted to Operations Research

From here, we note, by coupling to an M/M/1 with arrival rate and departure rate both equal to kλ, we

can bound E
[
min

(
v
(down)
i+1 − v

(up)
i , β

)∣∣∣v(up)
i <X

]
by the expected minimum between β and the length of a

single-job busy period in that system. Applying Claim 21, we can complete the proof, finding that

E
[
min

(
v
(down)
i+1 − v

(up)
i , β

)∣∣∣F
v
(up)
i

]
≤D1

√
β√
µR

+
6

µR
.

For the second bound, we simply note that, during the draining phase, the number of busy servers Z(t)≥
R+1. It follows from a simple coupling argument that

E
[
min

(
v
(down)
i+1 − v

(up)
i , β

)∣∣∣F
v
(up)
i

]
≤ 1

µ
.

Combining the bounds pessimistically, we find that

E
[
min

(
v
(down)
i+1 ,X

)
− v

(down)
i

∣∣∣F
v
(down)
i

]
≤ D2

µ
√
R

+
D3

µR
+

1

µML

+min

(
D1

√
β√
µR

,
1

µ

)
≤ D2

µ
√
R

+
D3

µR
+

2

µML

B.6.3. Proof of (30): Upper Bound on Probability of Another Downward Visit. To bound the prob-

ability of an additional downcrossing, we again make a coupling argument. In particular, we couple again

to the system which only has R servers busy, which gives an upper bound on the number of jobs in the

system N(t). If, in our coupled system, we reach Ñ(t) =R+ML before we reach Ñ(t) =R, then another

upcrossing must have previously occurred in the original system, and thus another downcrossing must also

occur. But, of course, we know classically that the probability that this happens is just 1
ML

; this is precisely

what is asserted by (30). □

Appendix C: Proof of Multiplicative Tightness

We now show that the upper and lower bounds of Theorems 1 and 2, respectively, differ by at most a

multiplicative factor.

THEOREM 3. The bounds of Theorems 1 and 2 lie within a constant multiplicative factor of each other. In

particular, using =c to denote equivalence modulo a multiplicative constant,

E [Q(∞)] =c β
√
R+

1

1− ρ
. (31)

C.1. Proof for Lower Bound.

We prove Theorem 3 in two parts, showing equivalence for the lower bound, then for the upper bound. For

the lower bound, we first discard all constants and a number of terms in the denominator, since β > 1
µ

by

assumption. Doing so, we obtain

E [Q(∞)]≥c

µβ2
√
R+

[L1β
√
R−k(1−ρ)]

+

µk(1−ρ)

[[
L1β

√
R− k(1− ρ

]+
+ 1

1−ρ

]
β+ β

√
R

µk(1−ρ)

, (32)

where ≥c denotes that the inequality holds up to an (unspecified) constant factor.
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C.1.1. Replacing the [·]+ term. Now, we show that the
[
β
√
R− k(1− ρ)

]+
term can be replaced by the

term µβ
√
R, while losing only a constant factor; this turns out to be the difficult part. We approach this by

casing on whether the positive term 1
2
L1µβ

√
R≥ k(1− ρ).

First case. If we have 1
2
L1β

√
R≥ k(1− ρ), then

[
µL1β

√
R− k(1− ρ)

]+
≥ 1

2
L1β

√
R=c µβ

√
R.

Second case. In the second case, assume that 1
2
L1β

√
R< k(1− ρ). In this case, even if we increase the

value of the numerator by replacing the [·]+ term, the relevant term in the numerator becomes

β
√
R

k(1− ρ)

[
µβ

√
R+

1

1− ρ

]
= µβ2

√
R ·

√
R

k(1− ρ)
·
[
1+

1

µβ
√
R

]
=c µβ

2
√
R ·

√
R

k(1− ρ)
≤c µβ

2
√
R · 1

β

where in the second equality we have used that
√
R ≥ 1 and µβ ≥ 1, and in the final inequality we have

used our case assumption. From here, it’s clear that one can replace the term [L1µβ
√
R− k(1− ρ)]+ with

the term µβ
√
R without altering the scaling behavior of numerator. In other words,

E [Q(∞)]≥c

µβ2
√
R+ µβ

√
R

µk(1−ρ)

[
β
√
R+ 1

1−ρ

]
β+ β

√
R

µk(1−ρ)

=c µβ
√
R+

√
R

k(1− ρ)+
√
R

1

1− ρ
. (33)

C.1.2. Bounding the final term. We now show equivalence for this final term, i.e. that

µβ
√
R+

√
R

k(1− ρ)+
√
R

1

1− ρ
=c µβ

√
R+

1

1− ρ
. (34)

To do so, we bound the rightmost term in (33). Note that, since
√
R

k−R+
√
R
≤ R

k−R+R
= ρ, in order for this term

to have an appreciable effect on the scaling, we must have that ρ
1−ρ ≥c µβ

√
R, or, phrased more usefully,

we must have
√
R≥c µβk(1− ρ). But even in this case, we can bound the factor in the rightmost term of

(33) with
√
R

k(1−ρ)+
√
R
≥c

βk(1−ρ)
k(1−ρ)+µβk(1−ρ) =

µβ
1+µβ

=c 1; the multiplicative equivalence (34) follows.

C.2. Proof for Upper Bound.

C.2.1. Initial Steps. The proof for the upper bound follows along the same lines. First, note that the terms

outside of the fraction are R
M

≤ R
k(1−ρ) =

ρ
1−ρ and

√
µβR<<µβ

√
R. Discarding the lower order terms and

constants, we obtain

E [Q(∞)]≤c µβ
√
R+

ρ

1− ρ
+
µβ2

√
R+ g

(
9(µβ)2R,3µβ

√
R,k(1− ρ)

)
β+ µβ

√
R

µk(1−ρ)

, (35)

where one should recall that M =c min
(
k(1− ρ),

√
µβR

)
. For the terms in the fraction, the denominator

of the upper bound is already up-to-constants-equivalent to the denominator of (32). It thus suffices to show

that the numerator of the upper bound aligns with the numerator of (33). However, note that, by definition,

the function

g
(
9(µβ)2R,3(µβ)

√
R,k(1− ρ)

)
≜

3µβ
√
R

k(1− ρ)

[
3µβ

√
R+1

2
+

1

1− ρ

]
;

thus, the terms are clearly equivalent up to scaling. □
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Appendix D: The Approximation

In Section D, we present our approximation for the average waiting time in the M/M/k/Setup-Deterministic.

We begin by discussing why we need such an approximation, then state the approximation, then give a short

justification for its form.

D.1. Why we need an approximation

Despite our success in analyzing the M/M/k/Setup-Deterministic, our upper and lower bounds alone are not

suitable for practical use in predicting the value of the average waiting time E [TQ].

There are two reasons for this. First, although we can prove that our bounds are both within a constant

factor of the true waiting time (Theorem 3), it’s not a priori obvious whether the true value of E [TQ] will

get closer to one bound or the other as we vary the system parameters. Although the true value does not

seem to ever get closer to a particular bound (and so we could conceivably just scale our lower bound to

serve as a predictor), it would be better to have a more concrete theoretical justification for our prediction.

The second reason why our bounds are unsuitable for practical use is their complexity. Although both the

upper and lower bounds are far more straightforward to compute than, for example, the average waiting time

in the M/M/k/Setup-Exponential, both bounds incorporate a large number of terms and are thus somewhat

difficult to reason about on the fly. As such, it would be better to have a predictor which incorporates only

a few, easy-to-remember terms.

D.2. Approximation: Statement

To this end, we introduce the following approximation; the justification for the approximation follows. We

evaluate the approximation in Figure 4; it is extremely accurate, across a variety of parameter settings.

Approximation 2 (Approximation to the average queue length.) In the M/M/k/Setup-Deterministic, for

offered loads R≜ kρ > 2 and taking Capx ≜
√

π
2

,

E [Q(∞)]≈Qapx ≜

1
2
β2Capx

√
R+

βCapx
√
R

µk(1−ρ)

[
βCapx

√
R+1

2
+ 1

1−ρ

]
β+

βCapx
√
R

µk(1−ρ)

. (36)

D.3. Justification

We arrive at this bound via a straightforward combination of the bounds from Theorems 1 and 2, along

with a few modifications. We follow our renewal-reward analysis, separately approximating the expected

time integral over our renewal cycle and the expected length of that renewal cycle, the numerator and

denominator of 36, respectively.
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D.3.1. Justification of Numerator. We first approximate the numerator of our expression, the expected

time integral over our chosen renewal cycle. We begin by recalling the lower bound on the time integral,

Lemma 5, which states

E
[∫ X

0

Q(t)dt
]
≥L1β

2
√
R+ Ibusy

([
L1β

√
R− (k−R)

]+
, k−R

)
,

where

Ibusy (x, z)≜
x

µz

[
x+1

2
+

1

1− kλ
kλ+µz

]
represents the time integral of the queue length a certain M/M/1 queue over a busy period started by x jobs.

To obtain the appropriate constant Capx, we next note that, although our theorem states L1 as an absolute

constant, as the setup time β and the offered loadR grow, the best possible constant will becomeCapx =
√

π
2

.

Under the hood, this convergence stems from the fact that

R∑
j=1

j∏
i=1

(
1− j

R

)
≈
∫ ∞

0

e
−j2
2R dj =

1

2

√
2πR;

see the proof of Lemma 5 for more details.

To complete the approximation, it suffices to remove the subtraction of (k−R) in the busy period term,

which we anticipate is an artifact of our analysis. Removing it, we obtain the desired approximation

E
[∫ X

0

Q(t)dt
]
≈ 1

2
β2Capx

√
R+

βCapx

√
R

µk(1− ρ)

[
βCapx

√
R+1

2
+

1

1− ρ

]
. (37)

D.3.2. Justification of Denominator. We next approximate the denominator of our expression, the

expected length of our chosen renewal cycle. To do so, we again make use of the lower bound on the

expected cycle length E [X] from Lemma 3, which states

E [X]≥ β+
L1β

√
R

µk(1− ρ)
.

By making the same convergence argument for L1, i.e. that L1 → Capx for large setup times β and large

offered loads R, we obtain the denominator, completing both parts of our bound.

Appendix E: Coupling Claims.

E.1. Proof of Claim 2, the Coupling Integral Bound.

CLAIM 2 (Coupling Integral Bound). Let τ be some stopping time and dgen be the next down-crossing as

described in Section 6.2.2. Suppose that, at time τ , we have a lower bound on the number of busy servers

over a period, i.e. we know that the number of busy servers Z(t)≥R− j, for all t ∈ [τ, τ +min(ℓ, dgen)]

and for some non-negative j. Then we have the following bound on the integral over this time period:

E

[∫ τ+min(dgen,ℓ)

τ

[N(t)−h]dt

∣∣∣∣∣Fτ
]
≤ ℓ · [N(τ)−h]

+
+

1

2
µjℓ2.
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We prove this claim in three parts. First, we construct a coupled process Ñ(t)≥N(t) on the interval

of interest. Then, we give an upper bound on E
[∫ τ+min(ℓ,dgen)
τ

Ñ(t)dt
∣∣∣Fτ]. Define Ñ(t) as

Ñ(t)≜N(τ)+A(τ, t)−D [R− j] ((τ, t)) .

Then, by Claim 1, we have that

Ñ(t)≥N(t).

on the interval of interest. To develop the integral, we first move the minimum from the bounds of inte-

gration into the integrand. In particular, we note that the quantity N(dgen)− h = 0, and thus, for any t >

τ + dgen, the quantity N(min (τ + dgen, t))− h = 0. On the other hand, for any t < τ + dgen, the quantity

N (min (τ + dgen, t)) =N (t). It follows that∫ τ+min(ℓ,dgen)

τ

[N(t)−h]dt=
∫ τ+min(ℓ,dgen)

τ

[N(min (t, τ + dgen))−h]dt

=

∫ τ+min(ℓ,dgen)

τ

[N(min (t, τ + dgen))−h]dt+
∫ τ+ℓ

τ+min(ℓ,dgen)
[N(min (t, τ + dgen))−h]dt

=

∫ τ+ℓ

τ

[N(min (t, τ + dgen))−h]dt

≤
∫ τ+ℓ

τ

[
Ñ(min (t, τ + dgen))−h

]
dt.

Defining ˜dgen ≜min
{
t > 0 : Ñ(τ + t)≤ h

}
, since Ñ(t) ≥ N(t), we know both that ˜dgen ≥ dgen and that,

for any t∈ [τ + dgen, τ + ˜dgen],

Ñ(t)−h≥ 0.

Moreover, the process V (t) defined as

V (t)≜ Ñ(t)−µjt

Is a martingale. Thus, we have∫ τ+ℓ

τ

[
Ñ(min (t, τ + dgen))−h

]
dt≤

∫ τ+ℓ

τ

[
Ñ(min

(
t, τ + ˜dgen

)
)−h

]
dt.

Taking the expectation, we find that

E
[∫ τ+ℓ

τ

[
Ñ(min

(
t, τ + ˜dgen

)
)−h

]
dt
∣∣∣∣Fτ]= ∫ τ+ℓ

τ

E
[
Ñ(min

(
t, τ + ˜dgen

)
)−h

∣∣∣Fτ]dt

=

∫ τ+ℓ

τ

E
[
V (min

(
t, τ + ˜dgen

)
)+µj

(
min

(
τ + ˜dgen, t

))
−h
∣∣∣Fτ]dt

=

∫ τ+ℓ

τ

E
[
V (τ)+µj

(
min

(
τ + ˜dgen, t

))
−h
∣∣∣Fτ]dt

(38)
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≤
∫ τ+ℓ

τ

E [V (τ)+µjt−h|Fτ ]dt

=

∫ τ+ℓ

τ

E
[
Ñ(τ)−µjτ +µjt−h

∣∣∣Fτ]dt

=
[
Ñ(τ)−h

]
ℓ+

1

2
µjℓ2,

where (38) is an application of Doob’s Optimal Stopping Theorem.

E.2. Proof of Claim 3, the Coupling Probability Bound.

We now prove Claim 3, restated here for the reader’s convenience.

CLAIM 3 (Coupling Probability Bound). Let τ be some stopping time and dgen be the next down-crossing

as described in Section 6.2.2. We consider two cases.

In the first case, suppose that we have a lower bound on the number of busy servers Z(t) over some

length ℓ interval starting at time τ , i.e. the busy servers Z(t)≥R− j, for all t ∈ [τ, τ +min(ℓ, dgen)] and

for some non-negative j. Then, we can bound the threshold-crossing probability by

Pr (dgen < ℓ|Fτ )≥ 2Φ

(
−

[
N(τ)−h+µjℓ√
ℓ(2kλ−µj)

])
− 2

3
√
ℓ(2kλ−µj)

.

In particular, if N(τ)−h= c1
√
µβR, then the probability Pr (dgen < ℓ|Fτ )≥ 2Φ

(
− c1√

2

)
− 1

100
.

In the second case, suppose that we instead have the upper bound on Z(t) ≤ R during this interval

instead. Then,

Pr (dgen < ℓ|Fτ )≤ 2Φ

(
−
[
N(τ)−h√

2ℓkλ

])
− 2

3
√
2kλℓ

.

As before, if N(τ)−h= c
√
µβR, then the probability Pr (dgen < ℓ|Fτ )≤ 2Φ

(
− c√

2

)
+ 1

100
.

We prove this result in three parts. First, we use Claim 1 to construct a process Ñ(t) ≥ N(t) on

the interval of interest. Afterwards, we analyze the down-crossing probability of this coupled process. In

particular, we use a reflection argument to show that

Pr (dgen < ℓ)≥ 2Pr
(
Ñ(τ + ℓ)≤ h

)
,

then use a Berry-Esseen bound to bound this final probability. In what follows, we focus on the lower-bound;

the upper bound follows in precisely the same way.

To construct our coupled process, we note that, by assumption, the number of busy servers Z(t)≥R− j

for any t∈ [τ, τ +min(ℓ, dgen)]. Thus, by Claim 1, the process Ñ(t) defined as

Ñ(t)≜N(τ)+A(τ, τ + t)+D [R− j] ([τ, τ + t])

is an upper bound for N(t+ τ), i.e.

Ñ(t)≥N(τ + t)
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for any t∈ [0,min(ℓ, dgen)]. By definition, we have that

Pr (dgen < ℓ) = Pr

(
inf
t∈[0,ℓ)

N(τ + t)≤ h

)
≥Pr

(
inf
t∈[0,ℓ)

Ñ(t)≤ h

)
.

From a reflection argument, since Ñ is upwards-biased,

Pr

(
inf
t∈[0,ℓ)

Ñ(t)≤ h

)
=Pr

(
inf
t∈[0,ℓ)

Ñ(t)≤ h, Ñ(ℓ)<h

)
+Pr

(
inf
t∈[0,ℓ)

Ñ(t)≤ h, Ñ(ℓ)≥ h

)
≥ 2Pr

(
inf
t∈[0,ℓ)

Ñ(t)≤ h, Ñ(ℓ)<h

)
= 2Pr

(
Ñ(ℓ)<h

)
.

Let σ≜
√
ℓ(2kλ−µj). We now apply Now, assume that, for any x,∣∣∣Pr(Ñ(ℓ)< Ñ(0)+µjℓ+xσ

)
−Φ(x)

∣∣∣≤ 0.3328

σ
, (39)

we have

Pr
(
Ñ(ℓ)<h

)
=Pr

(
Ñ(ℓ)< Ñ(0)+µjℓ+

h−µjℓ− Ñ(0)

σ
·σ

)

≥Φ

(
h−µjℓ− Ñ(0)

σ

)
− 1

3σ

=Φ

(
− [N(τ)−h+µjℓ]

σ

)
− 1

3σ
.

Putting this all together, we find

Pr (dgen < ℓ|Fτ )≥ 2Φ

(
− [N(τ)−h+µjℓ]

σ

)
− 2

3σ
.

From here, then, it suffices to show (39). To begin, note that, if we choose some arbitrarily large n and

define

Xi ≜Π′
i

(
kλℓ

n

)
−Π′′

i

(
µ(R− j)ℓ

n

)
− µjℓ

n
,

where each Π(y) is an independent Poisson random variable with mean y, then

Ñ(ℓ) =d

n∑
i=1

Xi+µjℓ+ Ñ(0).

To compute the moments ofXi, note that one can define centered Poisson random variablesAi =Π
(
kλℓ
n

)
−

kλℓ
n

and Bi =Π
(
µ(R−j)ℓ

n

)
− µ(R−j)ℓ

n
, and then take Xi =Ai−Bi. Doing this, one finds that

E
[
X2
i

]
=E

[
(Ai−Bi)

2
]
=
kλℓ

n
+
µ(R− j)ℓ

n
=
µ(2R− j)ℓ

n
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and, using the triangle inequality, that

E
[
|Xi|3

]
=E

[
|Ai−Bi|3

]
≤E

[
|Ai|3

]
+E

[∣∣B3
i

∣∣]= µ(2R− j)ℓ

n
+ o

(
1

n2

)
.

We now apply the main result of Shevtsova (2011). Let σn ≜
√

E [X2
i ] =

√
µ(2R−j)ℓ

n
= σ√

n
and note that

ρn =E
[
|Xi|3

]
<σn+ o

(
1
n2

)
(from Cook (2024)). Then, noting that ρn ≥ 1.286σ3

n for sufficiently large n,

we have

max
x

∣∣∣∣Pr(∑Xi√
nσn

<x

)
−Φ(x)

∣∣∣∣≤ 0.3328ρn+0.429σ3
n

σ3
n

√
n

=
0.3328√
µ(2R− j)ℓ

+ o

(
1

n

)
.

Now noting that ∑n

i=1Xi√
nσ

=
Ñ(ℓ)− Ñ(0)−µjℓ

σ

and taking n→∞, we have our result. □

E.3. Proof of Claim 18: Bound on Expected Value After Coupling.

CLAIM 18 (Bound on Expected Value after Coupling.). Let τ be some stopping time and dgen be the next

down-crossing as described in Section 6.2.2. Suppose that we have a lower bound on the number of busy

servers Z(t) over some length ℓ interval starting at time τ , i.e. the busy servers Z(t) ≥ R − j, for all

t∈ [τ, τ +min(ℓ, dgen)] and for some non-negative j. Then, bounding the first moment,

E
[
[N (τ + ℓ)−h]1dgen>ℓ

∣∣Fτ]≤ [N(τ)−h] +µjℓ, (40)

and, bounding the second moment,

E
[
[N (τ + ℓ)−h]1dgen≥ℓ

]
≤ [N(τ)−h+µjℓ]

2
+2µRℓ. (41)

E.3.1. Proof. The proof is essentially an application of Doob’s Optional Stopping Theorem to an appro-

priately selected martingale. To begin, we define a coupled process Ñ(t) with

Ñ(t− τ)≜N(τ)+A[τ, t]−D [R− j] ([τ, t]) ;

by Claim 1, we know that Ñ(t− τ) ≥N(t) for any t ∈ [τ, τ +min(dgen, ℓ)], and that the coupled hitting

time ˜dgen ≜min
{
t > 0 : Ñ(t)≤ h

}
can not be smaller than the original hitting time dgen. It follows that

N (τ + ℓ)1dgen>ℓ ≤ Ñ (ℓ)1 ˜dgen>ℓ
.

Thus, we bound coupled versions of (40) and (41).
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Construction of martingales. We now construct our martingales and set up the language of optional

stopping. Note that, for any process Ñ(t) with independent, stationary increments, both functions V1 and

V2, defined as

V1(t)≜
[
Ñ(t)−h

]
−E

[
Ñ(t)− Ñ(0)

]
and

V2(t)≜
[
Ñ(t)−h−E

[
Ñ(t)− Ñ(0)

]]2
−E

[[
Ñ(t)−h−E

[
Ñ(t)− Ñ(0)

]]2]
=
(
Ñ(t)−h−µjt

)2

−µ (2R− j) t

are martingales Karatzas and Shreve (2012). Moreover, one has that[
Ñ(ℓ)−h

]
1 ˜dgen>ℓ

=
[
Ñ
(
min

(
˜dgen, ℓ

))
−h
]
1 ˜dgen>ℓ

=
[
Ñ
(
min

(
˜dgen, ℓ

))
−h
]
1 ˜dgen>ℓ

+
[
Ñ
(
min

(
˜dgen, ℓ

))
−h
]
1ℓ≤ ˜dgen

=
[
Ñ
(
min

(
˜dgen, ℓ

))
−h
]
.

Proof of (40). Combining these facts allows us to prove our desired result. Applying Doob’s Optional

Stopping Theorem along with our previous deductions, we obtain

E
[
[N (τ + ℓ)−h]1dgen>ℓ

∣∣Fτ]≤E
[[
Ñ (ℓ)−h

]
1 ˜dgen>ℓ

]
=E

[
Ñ
(
min

(
˜dgen, ℓ

))
−h
]

=E
[
V1

(
min

(
˜dgen, ℓ

))]
+µjE

[
min

(
˜dgen, ℓ

)]
=E [V1 (0)]+µjE

[
min

(
˜dgen, ℓ

)]
=
[
Ñ(0)−h

]
+µjE

[
min

(
˜dgen, ℓ

)]
≤
[
Ñ(0)−h

]
+µjℓ

= [N(τ)−h] +µjℓ.

Proof of (41). To do the same for the squared martingale V2(t), we must first note, via some algebra, that(
Ñ(t)−h

)2

= V2(t)+
(
Ñ(t)−h

)
µjt−µj2t2 +µ (2R− j) t.

Now, applying the same deductions we made previously,

E
[
[N (τ + ℓ)−h]1dgen>ℓ

∣∣Fτ]
≤E

[[
Ñ (ℓ)−h

]2
1 ˜dgen>ℓ

]
=E

[(
Ñ
(
min

(
˜dgen, ℓ

))
−h
)2
]
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=E
[
V2

(
min

(
˜dgen, ℓ

))]
+E

[(
Ñ(min

(
˜dgen, ℓ

)
)−h

)
µjmin

(
˜dgen, ℓ

)]
−µj2

(
min

(
˜dgen, ℓ

))2

+µ (2R− j)E
[
min

(
˜dgen, ℓ

)]
≤E

[
V2

(
min

(
˜dgen, ℓ

))]
+E

[(
Ñ(min

(
˜dgen, ℓ

)
)−h

)]
µjℓ+µ (2R) ℓ

≤E [V2 (0)]+
[
Ñ(0)−h+µjℓ

]
µjℓ+µ (2R) ℓ

=
[
Ñ(0)−h

]2
+
[
Ñ(0)−h

]
µjℓ+(µjℓ)

2
+µ (2R) ℓ

=
[
Ñ(0)−h+µjℓ

]2
−
[
Ñ(0)−h

]
µjℓ+µ2Rℓ

≤
[
Ñ(0)−h+µjℓ

]2
+2µRℓ

= [N(τ)−h+µjℓ]
2
+2µRℓ. □

Appendix F: Hitting Time Bounds.

F.1. Proof of Claim 19, Discrete-Time Hitting Time Tail Bound.

CLAIM 19 (Discrete-Time Hitting Time Tail Bound). Suppose one has an upwards-biased discrete ran-

dom walk V (t) where in each step

Pr (V (t+1) = V (t)+ 1|Ft) = p= 1− q,

where p ≥ 1
2
≥ q. Suppose that V (0) = 1 and let the hitting time γ ≜min{t∈N : V (t) = 0} be the first

timestep where the walk V (t) = 0. Then, for n≥ 1,

Pr (γ ≥ 2m+1)≤ 1√
π

2q√
m

(
1+

1

2(m+1)

)
.

Moreover, if p= q= 1
2
, then

Pr (γ ≥ 2m+1)≥ 1√
π
e−

1
6m

1√
m+1

.

F.1.1. Proof We first note, as in Williams et al. (2022), that by a counting argument Pr (γ = 2ℓ+1) =

q (qp)
ℓ
Cℓ, where Cℓ ≜ 1

ℓ+1

(2ℓ)!

ℓ!ℓ!
is the ℓ-th Catalan number; note that γ can not be even, since the number of

downward steps must exceed the number of upward steps by exactly 1.

We proceed by bounding the Catalan numbers using Stirling’s approximation. For m = 0, then

Pr (γ ≥ 1) = Pr (γ ≥ 2) = p, i.e. the probability that the first step is an upward step. For m≥ 1, applying

Stirling’s approximation and simplifying gives

e−
1
6ℓ

1√
πℓ(ℓ+1)

q (4pq)
ℓ ≤Pr (γ = 2ℓ+1)≤ 1√

πℓ(ℓ+1)
q (4pq)

ℓ
.



Authors’ names blinded for peer review
58 Article submitted to Operations Research

Lower bound. Since we are interested in the lower bound only when q= p= 1
2
, we obtain that

Pr (γ ≥ 2m+1)≥ 1√
pi

1

2

∞∑
ℓ=m

e−
1
6ℓ

√
ℓ(ℓ+1)

≥ 1√
π
e−

1
6m

1

2

∞∑
ℓ=m

1√
ℓ(ℓ+1)

≥ 1√
π
e−

1
6m

1

2

∫ ∞

m

1

(ℓ+1)3/2
dℓ

=
1√
π
e−

1
6m

1√
m+1

.

Upper bound. Noting that 4pq≤ 1, we have likewise that

Pr (γ ≥ 2m+1)≤ 1√
π
q

∞∑
ℓ=m

1√
ℓ(ℓ+1)

≤ 1√
π
q

1√
m(m+1)

+

∫ ∞

m

1

ℓ3/2
dℓ

=
1√
π
q

2√
m

(
1+

1

2(m+1)

)
.

F.2. Proof of Claim 20, Continuous-Time Hitting Time Tail Bound.

We further extend this discrete-time bound into a continuous-time bound.

CLAIM 20 (Continuous-Time Hitting Time Tail Bound). Suppose one has an Poisson arrival process

YA(t) of rate kλ and a Poisson departure process YD(t) of rate µ(R− j), for some integer j ≥ 0. Let the

continuous random walk Xc(t) = YA(t)−YD(t), with Xc(0) = 1, and define γc ≜min{t > 0 :Xc(t) = 0}.

Let ν = (2R− j)µt. For any ν ≥ 3, we have

Pr (γc ≥ t)≤ b1√
2

(
1√
ν
+

b2
ν3/2

)
where b1 =

√
2
π

and b2 = 1+ 2.5
b1

√
2
.

Moreover, if j = 0, then

Pr (γc ≥ t)≥ b1√
2
e
− 1

3(ν−1)
1√
ν+2

.

F.2.1. Proof of Upper Bound. To prove this claim, we first condition on the value of YT = YA(t)+YD(t),

the total number of Poisson events during the interval [0, t], then relate that to the same question in a

discrete-time random walk, a la Claim 19. Note that YT ∼ Poisson(ν), and thus

Pr (γc ≥ t) = Pr (γ ≥ YT )

=

∞∑
j=0

e−ν
νj

j!
Pr (γ ≥ j)

= e−ν +2pνe−ν +

∞∑
j=3

e−ν
νj

j!
Pr (γ ≥ j+1j is even)

= e−ν +2pνe−ν +

∞∑
j=0

e−ν
νj

j!
Pr

(
γ ≥ 2

(
j+1j is even − 1

2

)
+1

)
.
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Applying the discrete upper bound to the sum, we obtain
∞∑
j=3

e−ν
νj

j!
Pr

(
γ ≥ 2

(
j+1j is even − 1

2

)
+1

)

≤ b1
√
2q

∞∑
j=3

e−ν
νj

j!

1√
j+1j is even − 1

(
1+

1

(j+1j is even +1)

)

= b1
√
2q

1

ν

∞∑
j=3

e−ν
ν(j+1)

(j+1)!

1√
j+1j is even − 1

(
j+1+

j+1

j+1j is even +1

)

≤ b1
√
2q

1

ν

∞∑
j=3

e−ν
ν(j+1)

(j+1)!

j+2√
j+1j is even − 1

≤ b1
√
2q

1

ν

∞∑
j=3

e−ν
ν(j+1)

(j+1)!

j+1j is even − 1+3√
j+1j is even − 1

= b1
√
2q

1

ν

∞∑
j=3

e−ν
ν(j+1)

(j+1)!

(√
j+1j is even − 1+

3√
j+1j is even − 1

)
.

From here, we note that the function f(x) =
√
x+ 3√

x
is both increasing and concave for all x≥ 3. After

increasing the argument and applying Jensen’s inequality, we find that

≤ b1
√
2q

1

ν

∞∑
j=3

e−ν
ν(j+1)

(j+1)!

(√
j+1+

3√
j+1

)
≤ b1

√
2q

1

ν

(√
ν+

3√
ν

)
,

where in the final line we have used that the function f(x) is increasing in x for any x ≥ 3, and that

E [YT1YT≥4]≥ ν− 3≥ 3. Thus, we have that

Pr (γc ≥ t)≤ (3ν)e−ν +2q

√
2

π

(
1√
ν
+

1

ν3/2

)
≤ 2.5

ν3/2
+2q

√
2

π

(
1√
ν
+

1

ν3/2

)

F.2.2. Proof of Lower Bound. We approach the initial stages of the proof in the precisely the same way,

obtaining

Pr (γc ≥ t) = Pr (γ ≥ YT )

= e−ν +2pνe−ν +

∞∑
j=3

e−ν
νj

j!
Pr

(
γ ≥ 2

(
j+1j is even − 1

2

)
+1

)

≥
∞∑
j=3

e−ν
νj

j!
b1e

− 1
3(j+1j is even−1)

q
√
2√

(j+1j is even +1)

≥
∞∑
j=3

e−ν
νj

j!
b1e

− 1
3(j−1)

q
√
2√

(j+2)
.
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Applying Jensen’s inequality, we obtain

≥ b1q
√
2e

− 1
3(ν−1)

1√
ν+2

.

□

F.3. Proof of Claim 21, Bound on Expected Length of Stopped Random Walk.

CLAIM 21 (Bound on Expected Length of Stopped Random Walk). Suppose we have a critically

loaded M/M/1 queue with arrival rate and departure rate both equal to kλ, with offered load R> 100 and

setup time β > 100. Suppose also that at time 0, a job arrives. Let τ be the length of the busy period which

follows. Then, letting b1 ≜
√

2
π

,

E [min (β, τ)]≤ b1

√
β√
µR

+
6

µR
.

F.3.1. Proof. From Claim 20, the continuous-time random walk hitting time bound, we have that

Pr (τ ≥ t)≤ b1√
2

(
1√
ν
+

b2
ν3/2

)
, (42)

where ν = 2µRt and we require that ν ≥ 3. By integrating this bound (using a bound of 1 wherever this

bound doesn’t apply), we obtain

E [min (β, τ)] =

∫ β

0

Pr (τ > t)dt≤ 3

2µR
+

∫ β

3
2µR

b1√
2

(
1√
2µRt

+
b2

(2µR)
3/2

)
dt

≤ 3

2µR
+ b1

√
β√
µR

+
b1b2
4µR

[
2

√
2

3

]
≤ b1

√
β√
µR

+
6

µR
. □

F.4. Proof of Claim 22, Bound on the Expected Hitting Time in the M/M/∞.

CLAIM 22 (M/M/∞ Passage Time Bound). Given an M/M/∞ queue, let Tx→y denote the random

amount of time taken to go from state x to state y. Suppose this system has an arrival rate of kλ and a

per-server departure rate of µ. Let R≜ k λ
µ

. Then, for any h such that 1≤ h≤
√
R,

E
[
T(R+h−1)→(R+h)

]
≤

√
2π

µ
√
R

(
1+

h

R

)h− 1
2

e
1

12R ≤D2

√
π

µ
√
R
.

F.4.1. Proof. The proof here is quite simple. First, we note that the passage time in the M/M/∞ from state

(R+h−1) to state (R+h) is exactly the passage time from those states in the M/M/(R+h)/(R+h). This

new system has a nice product form, so that

E
[
T(R+h−1)→(R+h)

]
≤E

[
T(R+h)→(R+h)

]
=

1

µ(R+h)

1

πR+h

=
1

µ(R+h)

∑R+h

i=0
Ri

i!

RR+h

(R+h)!
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≤ 1

µ(R+h)
eR

(R+h)!

RR+h

≤ 1

µ(R+h)
eR
e

1
12(R+h)

√
2π(R+h)(R+h)R+he−(R+h)

RR+h

≤ e
1

12R
1

µ

1

µ
√
R+h

√
2π

(
1+

h

R

)R+h

e−h

≤
√
2π

µ
√
R

(
1+

h

R

)h− 1
2

e
1

12R

≤ 1

µ

√
2π√
R
e
h2

R e
1

12R

≤ 7

µ
√
R
,

where we have made extensive use of Stirling’s approximation and the bound (1+x)≤ ex.

Appendix G: Miscellaneous Claims

G.1. Proof of Claim 23, the Busy Period Integral Bound.

CLAIM 23 (Busy Period Integral Bound). Suppose that, at time τ , we can guarantee that N(τ) ≥

Z(τ)≥R+ j. Let ηi ≜min{t > 0 :N(t)≤R+ i}, for i∈ {j, j+1, . . . , [N(τ)−R]} . Then,

E
[∫ ηj

τ

[N(t)−R]dt
∣∣∣∣Fτ]≤ (N(τ)− (R+ j))

[
3

2µj
+

1

µ
+

R

µj2

]
+
(N(τ)− (R+ j))

2

2µj
≜ Ibusy ([N(τ)−R], j) .

We prove this claim via an appeal to conventional M/M/1 busy period analysis. In particular, we first

note that ∫ ηj

τ

[N(t)−R]dt=
N(τ)−R∑
i=j+1

∫ ηi−1

ηi

[N(t)−R]dt,

meaning we need only bound the integrals between the ηi’s. To bound that process, we define a coupled

process Ñ(t) and bound the integrals over that process.

To do so, note that, until time ηj , the number of busy servers Z(t)≥R+ j. By Claim 1, we can define,

for each index i, the i-th coupled process Ñi(t) as

Ñi(t) =N(ηi+1)+A(ηi+1, t)−D [R+ j] ([ηi+1, t)) ,

and have Ñ(t) ≥N(t) on the interval [ηi+1, ηi]. Furthermore, we can extend our integral of interest from

the interval [ηi+1, ηi) to the interval [ηi+1, η̃i), where η̃i ≜min{t > 0 :N(t)≤R+ i}. Now, we note that

E

[∫ η̃i

ηi+1

[
Ñi(t)−R

]
dt

∣∣∣∣∣Fτ
]
=E

[∫ η̃i

ηi+1

[
Ñi(t)− (R+ i)

]
dt

∣∣∣∣∣Fτ
]
+ iE [ηi+1 − η̃i|Fτ ] .

The first term on the right is simply the expected time integral of the number of jobs in an M/M/1 queue

over a busy period, with arrival rate kλ and departure rate µ(R+ j). The second term is simply the quantity
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i multipled by the expected length of that M/M/1 busy period. Let ρj = kλ
µ(R+j)

. Then, from standard results

on the M/M/1 busy period,

E

[∫ η̃i

ηi+1

[
Ñi(t)− (R+ i)

]
dt

∣∣∣∣∣Fτ
]
=

1

µj

[
1

1− ρj

]
=

1

µj

[
R

j
+1

]
=

1

µj
+

R

µj2
.

Summing over all values of i, we obtain

E
[∫ ηj

τ

[N(t)−R]dt
∣∣∣∣Fτ]

≤
N(τ)−R∑
i=j+1

E
[∫ η̃i−1

ηi

[
Ñi(t)−R

]
dt
∣∣∣∣Fτ]

=

N(τ)−R∑
i=j+1

[
1

µj
+

R

µj2

]
+ i

1

µj

= (N(τ)− (R+ j))

[
1

µj
+

R

µj2

]
+(N(τ)− (R+ j))

1

µ
+

1

µj

[
(N(τ)− (R+ j)) (N(τ)− (R+ j)+ 1)

2

]
= (N(τ)− (R+ j))

[
3

2µj
+

1

µ
+

R

µj2

]
+

(N(τ)− (R+ j))
2

2µj
,

as desired. □

G.2. Proof of Claim 13, the Wait Busy Claim.

CLAIM 13 (Wait Busy Claim). Let τ be some stopping time, let the number of jobs N(τ) = R+ h, and

define ns (h) ≜ min{h,k(1− ρ)}. Let the down-crossing dgen ≜ min{t > 0 :N(τ + t) =R+h− 1} . If

Z(τ)≥R, then

E
[∫ τ+dgen

τ

[N(t)− (R+h− 1)]dt
∣∣∣∣Fτ]≤ YR+ns(h)(τ)+g

(
1+2µRE

[
min

(
YR+ns(h)(τ), dgen

)]
,1, µns (h)

)
,

(12)

where the function g(x, y, z)≜ x 1
2µz

+ y
[
R
µz2

+ 3
2µz

]
.

Furthermore,

E

[∫ v
(down)
1

TA

[N(t)−R]dt

∣∣∣∣∣FTA
]
≤
[
β+

1

µ

][
E [N (TA)−R] +

R

MB

]
+

2

µ
ln

(
E [N (TA)−R]

MB

)
(13)

+ g
(
E
[
[N (TA)−R]

2
]
+2E [N (TA)−R] ,E [N (TA)−R] , k(1− ρ)

)
.

G.2.1. Proof of (12). We prove the two parts of Claim 13 separately; we first show (12) by applying

coupling, martingales, and busy period analysis. First, note that, if the down-crossing at τ + dgen does not

occur by time YR+ns(h)(τ), then the system must have at least (R+ns (h)) servers at its disposal afterwards.

(Note that the ns (·) function here is just to account for the case where you have more jobs than servers.)

Accordingly, we split our analysis into two parts.
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First portion. For the first portion, since the number of busy servers Z(t)≥R, by coupling our system

to a critically-loaded M/M/1 using Claim 2, we have

E

[∫ τ+min(dgen,YR+ns(h)(τ))

τ

[N(t)− (R+h− 1)]dt

∣∣∣∣∣Fτ
]
≤ YR+ns(h)(τ).

Second portion. For the second portion, since, at that point the number of busy serversZ(t)≥R+ns (h),

we can apply a stronger bound. In particular, at time
(
τ +YR+ns(h) (τ)

)
, we can couple to an accordingly-

stronger M/M/1 with the same number of jobs. From basic busy period analysis and Claim 1, this tells us

that, letting the adjusted number of jobs Nadj (t) ≜ N(τ + t)− (R+ h− 1) and the important remaining

setup time Yimp ≜ YR+ns(h) (τ) as a shorthand,

E

[
1Yimp<dgen

∫ dgen

Yimp

[Nadj (t)]dt

∣∣∣∣∣Fτ+Yimp

]
≤ 1Yimp<dgeng

(
Nadj (Yimp)

2
,Nadj (Yimp) ,ns (h)

)
,

since the function g(x2, x, z) describes the integral of the number of jobs over a busy period

started by x jobs in an M/M/1 with arrival rate kλ and departure rate µ (R+ z). Note that

1Yimp<dgen [N(τ +Yimp)− (R+h− 1)] = [N(τ +min(dgen, Yimp))− (R+h− 1)], since N(τ +dgen) =R+

h− 1 by definition. Coupling our system to the critically-loaded M/M/1 Ñ system as before, then taking

expectations and applying Doob’s Optional Stopping Theorem, we obtain, as desired,

E

[
1YR+ns(h)(τ)<dgen

∫ dgen

YR+ns(h)(τ)

Nadj (t)dt

∣∣∣∣∣Fτ+YR+ns(h)(τ)

]
≤ g

(
1+2µRE

[
min

(
YR+ns(h) (τ) , dgen

)]
,1,ns (h)

)
.

Combining these two terms, we obtain (12).

G.2.2. Proof of (13). We now apply (12) to prove (13).

Decomposition in terms of ηi’s. We first fix the filtration/state at the accumulation time TA, then define

the hitting times ηi ≜min{t > TA :N(t)≤R+ i} for a set number of jobs i ∈ [MB,N(TA)]; we accord-

ingly omit the filtration at time TA in our expectations. Note that the down-crossing v(down)
1 = ηMB

, by this

definition. From there, it’s clear that∫ v
(down)
1

TA

[N(t)−R]dt=
N(TA)−R−1∑

i=MB

∫ ηi

ηi+1

[N(t)−R]dt.

For each of these terms, we can separate [N(t)−R] = [N(t)− (R+ i)] + i and apply (12) to find

E

[∫
ηi+1

ηi[N(t)−R]

]
≤E

[
YR+ns(h)(ηi+1)

]
+ iE

[
min

(
YR+ns(i+1) (ηi+1) , ηi− ηi+1

)]
(43)

+ g
([
1+2µRE

[
min

(
YR+ns(i+1) (ηi+1) , (ηi− ηi+1)

)]]
,1, µns (i+1)

)
(44)

+ i · 1

µns (i+1)
. (45)

We analyze each of these terms separately.
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Bound on (43), the remaining setup time portion. From here, it suffices to note that the sum

N(TA)−R∑
i=1

imin
(
YR+ns(h) (τ) , ηi− ηi+1

)
+

N(TA)−R∑
i=1

E
[
YR+ns(i+1) (ηi+1)

]
≤ β [N(TA)−R] ; (46)

actually, the statement is true without expectations. To see this, we make an interchange of summation

argument. First note that, if the (R+ i)-th server becomes busy, then, by the monotonicity of server states,

all servers of index smaller than (R + i) must also be busy; in other words, the remaining setup time

YR+ns(i+1) (ηi+1) = 0 for all i < s. To use this, we let s be the largest index for which YR+ns(s)(ηs) <

(ηs−1 − ηs). Note also that ηi is the first time after TA that the number of jobs N(t)≤R+ i (and so must

have been continuously decreasing from time TA); it follows that the remaining setup time YR+ns(i)(ηi)≤

[β− (ηi−TA)]
+. Breaking things down further,

N(TA)−R∑
i=s

imin
(
YR+ns(i+1) (ηi+1) , (ηi− ηi+1)

)
=

N(TA)−R∑
i=s

i (ηi− ηi+1)+ sYR+ns(s)(ηs).

From here, by an interchange of summation argument,

N(TA)−R∑
i=s

i (ηi− ηi+1) =

N(TA)−R∑
i=s

i∑
j=1

(ηi− ηi+1) =

N(TA)−R∑
j=s

N(TA)−R∑
i=j

(ηi− ηi+1) =

N(TA)−R∑
j=1

ηs−TA,

where, by definition, the (relative to TA) hitting time (ηs−TA)≤ β−YR+ns(s)(ηs); using this,(46) follows.

Bound on (44), the busy period integral portion. Applying similar reason to the sum of the first terms in

g, and using the independence of g in its first and second arguments (i.e. that g(x, y, z) = f1(x, z)+f2(y, z)

for two functions f1 and f2 linear in their first argument),

N(TA)−R∑
i=MB

(44) ≤ g (2µRβ,0,MB)+g
(
[N (TA)− k]

+
, [N (TA)− k]

+
, k(1− ρ)

)
+

min(N(TA)−R−1,k(1−ρ))∑
i=MB

g(1,1, i+1).

This last term above can be bounded by replacing it with an integral, which gives

min(N(TA)−R,k(1−ρ))∑
i=MB

g(1,1, i)≤
∫ min(N(TA)−R,k(1−ρ))

MB

2

µi
+

R

µi2
di

≤ 2

µ
ln

(
min(N (TA)−R,k(1− ρ))

MB

)
+
R

µ

[
1

MB

]
≤ 2

µ
ln

(
N (TA)−R

MB

)
+

R

µMB

.

Bound on (45), the busy period length portion. Using the definition of the function g, we also find that∑N(TA)−R
i=MB

i
µns(i) ≤ g

((
[N (TA)− k]

+
)2

+ [N (TA)− k]
+
,0, k(1− ρ)

)
+ 1

µ
min(k(1− ρ),N(TA)−R, .)
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Combining the terms to bound (13), the integral from TA to v
(down)
1 . Combining terms, noting that

N(TA)− k≥N (TA)−R≥ 0, and applying Jensen’s inequality to the ln (·) term, we find that

(13) ≤ βE [N(TA)−R] + g (2µRβ,0,MB)+E
[
g
(
[N (TA)− k]

+
, [N (TA)− k]

+
, k(1− ρ)

)]
+E

[
2

µ
ln

(
N (TA)−R

MB

)]
+

1

µ

R

MB

+E
[
g

((
[N (TA)− k]

+
)2

+ [N (TA)− k]
+
,0, k(1− ρ)

)]
+

1

µ
E [min (k(1− ρ),N(TA)−R)]

≤
[
β+

1

µ

][
E [N (TA)−R] +

R

MB

]
+

2

µ
ln

(
E [N (TA)−R]

MB

)
+ g

(
E
[
[N (TA)−R]

2
]
+2E [N (TA)−R] ,E [N (TA)−R] , k(1− ρ)

)
. □

G.3. Proof of Claim 6

We now prove Claim 6, restated here.

CLAIM 6 (Bound on the Probability of an Up-crossing p(j)rise). Let p(j)rise be the probability that the total

number of jobs N(t) exceeds R+C3

√
µβR during epoch j defined in (6). Then, for any epoch j ≥A5

√
R,

we have p(j)rise ≥ 0.99 A5√
R
.

We show a more general claim: that, for j ≥A5

√
R,

p
(j)
rise ≥ 0.99

j

R
. (47)

G.3.1. Proof of (47): Lower Bound on p(j)rise. We begin with a simple probability manipulation:

p
(j)
rise ≜Pr

(
N(t)≥C3

√
µβR at some point during epoch j

∣∣∣Fτj)
≥Pr

(
N(t)≥C3

√
µβR during the interval [τj,min(τj +β, τj+1)]

∣∣∣Fτj) .
From here, we make with a useful observation: since there are no server in setup at the beginning of an

epoch (as we have just turned off a server), no servers can complete setup in the first β time of an epoch.

Thus, the number of busy servers Z(t)≤R− j during this time, and, by Claim 1, the coupled process

Ñ(t)≜N(τj)+A(τj, t)−D [R− j] ((τj, t))

must be a lower bound on N(t), during the interval [τj, τj +β]. Moreover, the number of busy servers Z(t)

can not be smaller than R− j until the beginning of epoch j +1 either. Thus, we find that the behavior of

N(t) corresponds exactly with the behavior of Ñ(t) during the interval [τj,min(τj+1, τj +β)].

We now use this coupled process to analyze our original probability. Define the up-crossing time τup as

τup ≜min
{
t > 0 : Ñ(τj + t)≥R+C3

√
µβR

}
.
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Likewise, define the down-crossing time τdown as

τdown ≜min
{
t > 0 : Ñ(τj + t)≤R− (j+1)

}
.

It follows that

Pr
(
reach N(t)≤R− (j+1) during the interval [τj,min(τj +β, τj+1)]

∣∣Fτj)
=Pr

(
reach Ñ(t− τj)≤R− (j+1) during the interval [τj,min(τj +β, τj+1)]

∣∣∣Fτj)
=Pr(τup ≤ β, τup < τdown)

= Pr (τup ≤ β)−Pr (τup ≤ β, τup ≥ τdown)

= Pr (τup ≤ β)−Pr (τup ≤ β|τup ≥ τdown)Pr (τup ≥ τdown) .

We now observe that

Pr (τup ≤ β|τup ≥ τdown)≤Pr (τup ≤ β) , (48)

since the process has farther to go, less time to do so, and the process’s behavior is translation-invariant (this

last point is why we needed to analyze the coupled process instead).

Continuing from where we left off, we find that

p
(j)
rise =Pr(τup ≤ β)−Pr (τup ≤ β|τup ≥ τdown)Pr (τup ≥ τdown)

≥Pr (τup ≤ β)−Pr (τup ≤ β)Pr (τup ≥ τdown)

= Pr (τdown > τup)Pr (τup ≤ β)

≥Pr (τdown >∞)Pr (τup ≤ β)

=
j

R
Pr (τup ≤ β) ,

where the last equality is a classical result on upwards-biased discrete random walks (one can think of Ñ

as a discrete random walk driven by a Poisson process of rate (kλ+µ(R− j), where the probability that Ñ

increases at a Poisson event is kλ
kλ+µ(R−j) =

R
2R−j ).

From here, it suffices to lower bound Pr (τup ≤ β). To begin, note

Pr (τup ≤ β) = Pr

(
sup
t∈[0,β)

Ñ(t)≥R+C3

√
µβR

)
≥Pr

(
Ñ(β)≥R+C3

√
µβR

)
=Pr

(
A(τj, τj +β)−D [R− j] (τj, τj +β)≥ j+C3

√
µβR

)
.



Authors’ names blinded for peer review
Article submitted to Operations Research 67

Noting that the number of arrivals A(τj, τj + β) and the number of departures D [R− j] ([τj, τj +β]) are
independent Poisson r.v.’s, we can apply the Berry-Esseen bound of Claim 24 to find

= 1−Φ

(
µβj− j−C3

√
µβR√

µβ(2R− j)

)
− 1

3
√
µβ(2R− j)

≥ 1−Φ

(
0.99µβj−C3

√
µβR√

2µβR

)
− 1

3
√
µβR

= 1−Φ

(
−0.99

j√
R

√
µβ+

C3√
2

)
− 1

3
√
µβR

≥ 1−Φ

(
−9.9A5 +

C3√
2

)
− 1

300
.

To complete the proof, we set the constant A5 such that the final probability is ≥ 0.99. In particular, we

need

Φ

(
−9.9A5 +

C3√
2

)
≤ 2

300
,

which is achieved when A5 >
C3

9.9
√
2
+0.25; choosing A5 = 1 gives the result. □

G.4. Proof of Claim 24.

CLAIM 24 (Berry-Esseen bound for the Skellam distribution). Given two independent random vari-

ables Y1 ∼ Poisson(µ1) and Y2 ∼ Poisson(µ2), as well as a constant C with µ1 >µ2 +C, one has

Pr (Y1 −Y2 ≥C)≥ 1−Φ

(
−
[
µ1 −µ2 −C

µ1 +µ2

])
− 1

3
√
µ1 +µ2

.

G.5. Proof.

This follows directly from the Poisson Berry-Esseen bound of Cook (2024), applied twice; first approxi-

mating Y1 then approximating Y2. □

G.6. Proof of (18): Lower Bound on E [L], Expected Value of First Long Epoch Index.

We prove this result by first showing that

Pr (L> j|L≥ j)≥
(
1− j

R

)(
1− b1√

µβR

)
, (49)

where b1 = 2√
π

. Next, we show that this implies that for any δ ∈ (0,1) and any j < δR,

Pr (L> j)≥
(
1− b1√

µβR

)j+1

e−
j(j+1)

2R
1

1−δ . (50)

From here, we use the sum of tails formula E [L] =
∑∞

j=0Pr (L> j) to show

E [L]≥
(
1− b1√

µβR

)([√
π

2
(1− δ)− 1.15(1− δ)√

µβ

]√
R− 1

2
− 2(1− δ)

δ
e−R

δ2

1−δ

)
.

Choosing δ= 2√
R

then noting that µβ ≥ 100 and R≥ 100 gives the result.
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G.6.1. Proof of (49): Lower Bound on Probability that Current Epoch is Short. Recall that an epoch

j is long if τj+1 − τj > β, that L is the index of the first long epoch, and that, if L≥ j, then we learn that

L≥ j precisely at time τj , i.e. when epoch j begins. Moreover, since the system is Markovian, the behavior

of the system from τj onwards is completely independent of what happened previously. Thus,

Pr (L> j|L≥ j) = Pr
(
L> j

∣∣Fτj ,L≥ j
)
=Pr

(
τj+1 − τj ≤ β

∣∣Fτj ,L≥ j
)
=Pr(τj+1 − τj ≤ β) .

From here, we note that the random time τj+1− τj is a stopping time; a hitting time, to be exact. Moreover,

since the number of servers Z(t) can not increase before time τj + β and can not decrease until τj+1, we

have that the coupled process Ñ(t) defined as

Ñ(t− τj)≜ 1+A(τj, t)−D [R− j] ((τj, t))

is in correspondence with N(t); in particular,

N(t) = Ñ(t− τj)+R− j− 1

for any time t∈ [τj,min(τj +β, τj+1)]. If we define the coupled hitting time γc ≜min
{
t > 0 : Ñ(t)≤ 0

}
,

then we also have that the hitting time γc = τj+1 − τj , whenever the event {τj+1 − τj ≤ β} occurs. From

here, we can apply Claim 20 to find that

Pr (γc ≤ β)≥
(
1− j

R

)(
1− b1√

µβR

)
, as desired.

G.6.2. Proof of (50). Having shown the above bound on the conditional extension of the tail, we note

that, for j ≤ δR,

Pr (L≥ j+1) =Pr (L≥ j+1|L≥ j)Pr (L≥ j|L≥ j− 1) · · ·Pr (L≥ 1)

≥
j∏
i=0

(
1− i

R

)(
1− b1√

µβR

)

≥
(
1− b1√

µβR

)j+1 j∏
i=0

e−
i

R−i

≥
(
1− b1√

µβR

)j+1

e−
∑j
i=0

i
R−i

=

(
1− b1√

µβR

)j+1

e−
∑j
i=0

i
R

R
R−j

=

(
1− b1√

µβR

)j+1

e−
j(j+1)

2R
1

1−δ ,

as desired. □
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G.6.3. Proof of (G.6): Final Bound on E [L] using Gaussian Integral. We now complete the proof. Let

a≜ 1
2R

1
1−δ and ψ≜− ln

(
1− b1√

µβR

)
as a shorthand. Then we can rewrite (50) as

Pr (L≥ j+1)≥ e−aj
2−(ψ+a)j−ψ.

Now, using the sum-of-tails formula for expectations, we find that

E [L] =

R−1∑
j=0

Pr (L≥ j+1)

≥
δR−1∑
j=0

Pr (L≥ j+1)

≥
δR−1∑
j=0

e−aj
2−(ψ+a)j−ψ

≥
∫ δR

0

e−aj
2−(ψ+a)j−ψdj

=

∫ δR

0

e−a(j
2+(ψa+1)j)−ψdj

=

∫ δR

0

e−a(j+
1
2(

ψ
a+1))

2
+a

4 (
ψ
a+1)

2
−ψdj

= e
a
4 (

ψ
a+1)

2
−ψ
∫ δR

0

e−a(j+
1
2(

ψ
a+1))

2

dj.

Evaluating the integral further, we find that∫ δR

0

e−a(j+
1
2(

ψ
a+1))

2

dj =
∫ δR+ 1

2(
ψ
a+1)

1
2(

ψ
a+1)

e−aj
2

dj

=

∫ ∞

0

e−aj
2

dj−
∫ 1

2(
ψ
a+1)

0

e−aj
2

dj−
∫ ∞

δR+ 1
2(

ψ
a+1)

e−aj
2

dj.

We now bound each of these integrals in turn. First, we know classically that∫ ∞

0

e−aj
2

dj =
1

2

√
π

a
=

√
π

2
·
√
1− δ

√
R≥

√
π

2
· (1− δ)

√
R

Next, we note that, since the integrand is ≤ 1,∫ 1
2(

ψ
a+1)

0

e−aj
2

dj ≤ 1

2

(
ψ

a
+1

)
=

1

2

(
2R(1− δ) ln

(
1

1− b1√
µβR

))
+

1

2

≤R(1− δ)
b1√
µβR

1

1− b1√
µβR

+
1

2

≤
(

1√
β

)
(1− δ) · 100 · b1

100− b1

√
R+

1

2

≤ 1.15(1− δ)√
µβ

√
R+

1

2
.
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Finally, we have that,∫ ∞

δR+ 1
2(

ψ
a+1)

e−aj
2

dj ≤
∫ ∞

δR

e−aj
2

dj ≤
∫ ∞

δR

e−aδRjdj =
1

aδR
e−aδ

2R2

=
2(1− δ)

δ
e−R

δ2

1−δ .

To complete the proof, we note that e−ψ =
(
1− b1√

µβR

)
, thus

E [L]≥ e
a
4 (

ψ
a+1)

2
−ψ
∫ δR

0

e−a(j+
1
2(

ψ
a+1))

2

dj

≥ e−ψ
∫ δR

0

e−a(j+
1
2(

ψ
a+1))

2

dj

≥
(
1− b1√

µβR

)[√
π

2
(1− δ)− 1.15(1− δ)√

µβ

]√
R− 1

2
− 2(1− δ)

δ
e−R

δ2

1−δ

=

(
1− b1√

µβR

)[√
π

2
(1− δ)− 1.15(1− δ)√

µβ

]√
R− 1

2
− 2(1− δ)

δ
e−R

δ2

1−δ

=

(
1− b1√

µβR

)([√
π

2
(1− δ)− 1.15(1− δ)√

µβ

]√
R− 1

2
− 2(1− δ)

δ
e−R

δ2

1−δ

)
.

From here, we could choose δ to maximize our lower bound further based on system parameters, but a

simple choice is δ= 2√
R

. This gives

E [L]≥
(
1− b1√

µβR

)[(
1− 2√

R

)(√
π

2
− 1.15√

µβ
− 2e−4

)
− 1

2
√
R

]√
R

≥ 2

3

√
π

2

√
R,

as desired.

G.7. Proof of Claim 14.

CLAIM 14 (Upper Bound on E [N(TA)]). Recall that TA ≜min{t > 0 :Z(t) =R+1}. Then,

E [N(TA)−R]≤ F1µβ
√
R

(
1+

F2√
µβ

)
≤ 2.9µβ

√
R

and

E
[
(N(TA)−R)

2
]
≤ F 2

1 (µβ)
2R

(
1+

F2√
µβ

)2

+2µβR≤ 8.4(µβ)2R+2µβR

where F1 = 2.12 and F2 = 3.645.

G.7.1. Proof. The beginning of the proof will be the same for both of these inequalities. Using the up-

crossing and down-crossing decomposition of Section 6.3, we know that time TA occurs either during a rise

or during a fall. Since the number of jobs N(t)≤R+C3

√
µβR during a rise,

[N (TA)−R]1TA during a rise ≤C3

√
µβR1TA during a rise.
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If TA occurs during a fall, we need a more nuanced bound. Writing out the event {TA during a fall} in

terms of disjoint events, we find

{TA during a fall}=
R⋃
j=0

∞⋃
i=1

{
u
(j)
i ≤ TA <d

(j)
i

}
,

so that, for c∈ {1,2},

E [[N (TA)−R]
c
1TA during a fall] =

R−1∑
j=0

∞∑
i=1

E
[
[N (TA)−R]

c
1
u
(j)
i ≤TA<d

(j)
i

]
=

R−1∑
j=0

∞∑
i=1

E
[
[N (TA)−R]

c
1
TA<d

(j)
i

∣∣∣F
u
(j)
i

, n(j)
u ≥ i

]
Pr
(
nju ≥ i

)
.

To bound this conditional expectation, we apply Claim 18. Notice that N(u
(j)
i ) − R = C3

√
µβR, the

(R+1)-th server starts up at time TA = u
(j)
i + YR+1(u

(j)
i ) if TA < d

(j)
i , the time d(j)i is a hitting time, and

that Z(t)≥R− j until time τj+1 ≥ d
(j)
i . It follows that

E
[
[N (TA)−R]1

TA<d
(j)
i

∣∣∣F
u
(j)
i

, n(j)
u ≥ i

]
≤C3

√
µβR+µjYR+1(u

(j)
i )≤C3

√
µβR+µjβ,

and that

E
[
[N (TA)−R]

2
1
TA<d

(j)
i

∣∣∣F
u
(j)
i

, n(j)
u ≥ i

]
≤
(
C3

√
µβR+µjYR+1

(
u
(j)
i

))2

+µ2RYR+1

(
u
(j)
i

)
≤
(
C3

√
µβR+µjβ

)2

+µ2Rβ

=C2
3µβR+2C3

√
µβRµβj+(µβ)2j2 +2µRβ.

It now suffices to bound
∑

j

∑
i j
cPr

(
n(j)
u ≥ i

)
, where c ∈ {0,1,2}. We do this via the same method

used in Section 6.3:
R∑
j=1

∞∑
i=1

jcPr
(
n(j)
u ≥ i

)
≤

R∑
j=1

∞∑
i=1

jcPr (ne ≥ j)p
(j)
rise(1− p2)

i−1

=
1

p2

R∑
j=1

jcp
(j)
rise Pr (ne ≥ j)

≤ 1

C4p2

R∑
j=1

jcC4p
(j)
rise

j−1∏
ℓ=0

(
1−C4p

(ℓ)
rise

)
.

This is simply the expectation of a time-varying geometric random variable G, with Pr (G= j|G≥ j) =

C4p
(j)
rise. It follows that if one lower-bounds p(j)rise, then an upper bound on the desired expectation is obtained.

Applying Claim 6, we note that we are essentially boundingG using Y ∼ Geometric
(

0.99C4A5√
R

)
and saying

Y +A5

√
R stochastically-dominates G. It follows that

E [G]≤A5

√
R+

1

0.99C4A5

√
R
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and that, for any b,

E
[
(G+ b)2

]
≤E

[
(Y +A5

√
R+ b)2

]
=E

[
Y 2
]
+2(A5

√
R+ b)E [Y ] + (A5

√
R+ b)2

= 2E [Y ]
2 −E [Y ] + 2

(
A5

√
R+ b

)
E [Y ] +

(
A5

√
R+ b

)2

≤
(
E [Y ] +A5

√
R+ b

)2

+E [Y ]
2
.

Defining B5 ≜
C3
C4p2

, B6 ≜ 1
C4p2

(
1

0.99C4A5
+A5

)
, and B7 ≜ 1

2C4p2

[
1

(0.99C4A5)2
+2
]
, it follows that

E
[
[N (TA)−R]

2
1TA during a fall

]
≤ 1

C4p2

R∑
j=1

C4p
(j)
rise

[(
C3

√
µβR+µjβ

)2

+µ2Rβ

] j−1∏
ℓ=0

(
1−C4p

(ℓ)
rise

)
=

1

C4p2
E
[(
C3

√
µβR+µGβ

)2

+µ2Rβ

]
≤ 1

C4p2
E
[(
C3

√
µβR+µβY +µβA5

√
R
)2

+µ2Rβ

]
=

1

C4p2

[(
C3

√
µβR+µβ

1

0.99C4A5

√
R+µβA5

√
R

)2

+µβ
1

(0.99C4A5)2
R+2µβR

]

≤ 1

C2
4p

2
2

[(
C3

√
µβR+µβ

1

0.99C4A5

√
R+µβA5

√
R

)2
]
+

1

C4p2

[
1

(0.99C4A5)2
+2

]
µβR

=
(
B5

√
µβR+B6µβ

√
R
)2

+2B7µβR.

and that

E [[N (TA)−R]1TA during a fall]

≤ 1

C4p2

R∑
j=1

C4p
(j)
rise

[
C3

√
µβR+µjβ

] j−1∏
ℓ=0

(
1−C4p

(ℓ)
rise

)
=

1

C4p2
E
[
C3

√
µβR+µβG

]
≤ 1

C4p2

[
C3

√
µβR+µβ

(
A5

√
R+

1

0.99C4A5

√
R

)]
=
(
B5

√
µβR+B6µβ

√
R
)
.

Defining F1 ≜B6 and F2 ≜
(B5+C3)

B6
, it follows that

E [N(TA)−R]≤
(
(B5 +C3)

√
µβR+B6µβ

√
R
)
= F1µβ

√
R

(
1+

F2√
µβ

)
and that

E
[
[N (TA)−R]

2
]
≤
(
B5

√
µβR+B6µβ

√
R
)2

+2B7µβR≤ F1(µβ)
2R

(
1+

F2√
µβ

)2

+2µβR □
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Appendix H: Analysis of m-Policies

In this section, we study a natural policy that aims to mitigate the impact of setup times on waiting time.

Our result reveals that this policy is inadequate unless it keeps significantly more servers on compared to the

original policy described in Section 2; see Figure 9 for an illustration. This highlights the need for further

studies on designing policies for turning servers on and off in queueing systems with setup times to achieve

better tradeoffs between energy efficiency and performance.

The policies we study in this section are referred to as m-policies; we now describe how these policies

operate. Recall that servers are indexed by integers 1,2, . . . , k, and that we, without loss of generality, re-

index our collection of servers to ensure that each job departure is always from the highest indexed server

among the busy servers. Under the original policy (described in Section 2), server i is turned off when

the number of jobs in the system drops from i to i − 1. In contrast, an m-policy turns off servers less

aggressively. Specifically, server i is turned off when the number of jobs in the system drops from i−m to

i−m− 1, where 0≤m≤ k. Here m is referred to as the buffer size. The special case m= 0 corresponds

to the original policy. The m-policies with m> 0 reduce job waiting times, as keeping m extra servers on

ensures that the next m job arrivals do not need to wait for server setup.

The m-policies are more complicated to analyze compared to the original policy. One difficulty comes

from the fact, that under an m-policy, servers which are on are not necessarily busy. To capture this dis-

tinction, we introduce a new variable On(t) which tracks the number of servers that are on at time t. This

quantity generally is not equal to the number of servers that are busy at time t, which we continue to call

Z(t). However, despite this difficulty, we are able to analyze m-policies using our MIST technique, with a

more complicated coupling construction.

H.1. Main Result: A Lower Bound on m-Policies.

Our main result is that, unless the buffer size m is larger than Θ
(√

R
)

, the average waiting time under an

m-policy will not be much smaller than the original (m= 0) policy. More specifically, we show the theorem

below.

THEOREM 4 (Lower Bound on m-Policies). When using an m-policy to control setup in an

M/M/k/Setup-Deterministic system with an offered load R ≜ kρ ≥ 100, a setup time β ≥ 100 1
µ

, and an

m-value with m≤
√
R, the expected number of jobs in queue in steady state is lower-bounded by

E [Q(∞)]≥ F1

(
µβ

√
R+

1

1− ρ

)
,

for some constant F1 independent of system parameters.
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Figure 9 Simulation results showing the average waiting time for the M/M/k/Setup-Deterministic under various m-policies.

All results obtained with mean service time 1
µ
= 1 ms, mean setup time β = 1000 ms, and load kept at a constant

ρ= 0.5. Note that a significant performance difference can only be found once the quantity m is growing faster than

R0.5.

Proof Overview. In the remainder of Section H, we provide a proof of the stated lower bound, Theorem 4.

Our argument here is a variation on the argument made in Section G.6. We begin by defining our renewal

points to be those moments when the number of on servers On(t) transitions from (R+1) toR; note that this

is slightly distinct from our previous definition since, in general, the number of busy servers Z(t) ̸= On(t).

Taking X to be the next renewal point and applying the renewal reward theorem, it suffices to lower bound

the renewal integral E
[∫ X

0
Q(t)dt

]
and upper bound the cycle length E [X]. In what follows, we show the

following two lemmas, which, via the above, suffice to prove the lower bound of Theorem 4.

LEMMA 8 (Lower Bound on Renewal Integral). The renewal integral can be bounded by

E
[∫ X

0

[N(t)−R]dt
]
≥ F2µβ

2
√
R+ Ibusy

([
F2µβ

√
R− (k−R)

]
, k−R

)
,

where Ibusy (n, j)≜ n
µj

[
n+1
2

+ R
j
+1
]

and F2 ≜ 0.23.

LEMMA 9 (Upper Bound on Cycle Length). The length of a renewal cycle can be bounded by

E [X]≤ F3β+F4

µβ
√
R

µmin
(
k−R,

√
R
) ,

where F3 ≜ 2.6 and F4 ≜ 7.2.

Completion of Proof, assuming Lemmas 8 and 9. This result follows directly from the casework used in

the proof of Theorem 3.



Authors’ names blinded for peer review
Article submitted to Operations Research 75

H.2. Proof of Lemma 8, the Integral Lower Bound.

High-Level Strategy. As mentioned previously, to prove this lower bound, we use a variation on the

strategy used in Section G.6. In that proof, we first define a random quantity L which represents how many

servers end up turning off at the beginning of a renewal cycle, then derive a bound on the desired integral in

terms of its expected value E [L], then directly derive a bound on E [L]. In this proof, we define an almost

equivalent random variable Lex and proceed with more or less the same steps; however, the more-complex

behavior of the m-policy requires a more delicate analysis in order for us to find E [Lex].

Definition of τposs. Before defining Lex, we define a related stopping time τposs and prove a small but

critical fact about it. Let τposs ≜ min{t≥ 0 :Q(s)≥ 1 for all s∈ [t−β, t]} be the first moment that the

number of jobs in queue Q(t) has been non-zero for a full setup time. At the beginning of a renewal cycle,

since servers are setting up if and only if jobs are in the queue, it follows that the time τposs is the first time a

server could possibly complete setup. Since TA is the first time a specific server sets up, we have τposs ≤ TA.

Definition of Lex. With the stopping time τposs defined, we now define the random variable Lex and

describe its role going forward. Let Lex ≜ maxs∈[0,τposs] [R−On(t)] be the maximum number of servers

turned off in the period before time τposs. Now, via the same martingale arguments given in the proof of (17),

we have that

E
[∫ τposs

0

Q(t)dt
]
≥ 1

2
β2µE [Lex] . (51)

Likewise, in analogy to (20), by making a coupling argument we also have that

E

[∫ X

τposs

Q(t)dt

]
≥ Ibusy

(
[E [N(τposs)]− k]

+
, k−R

)
, (52)

where one should recall that Ibusy (n, j)≜ n
µj

[
n+1
2

+ R
j
+1
]
. After some martingale analysis (52) becomes

E

[∫ X

τposs

Q(t)dt

]
≥ Ibusy

(
[βE [Lex]− (k−R)]

+
, k−R

)
. (53)

Thus, outside of some algebra, to prove Lemma 8 it suffices for us to give a bound on the expectation E [Lex].

We give this lower bound in the following claim, which we will prove immediately.

CLAIM 25 (Bound on Lex). For any R≥ 2max
(√

R,m
)

, we have

E [Lex]≥ F2min

(
R

m
,
√
R

)
,

where F2 ≜ 0.23.
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H.3. Proof of Claim 25: Lower Bound on E [Lex].

To bound E [Lex], we upper bound the stopping probability Pr (Lex = j|Lex ≥ j), showing that, for any j ≤
max

(√
R,m

)
,

Pr (Lex = j|Lex ≥ j)≤ 4
max

(
m,

√
R
)

R

(
1+

b1√
µβ

)
; (54)

we defer the proof of this until the next section, Section H.3.1. From here, we can bound E [Lex] using the

usual sum-of-tails method, obtaining

E [Lex] =

R−m∑
j=0

Pr (Lex ≥ j+1)

≥
max(

√
R,m)∑

j=0

1− 4
max

(
m,

√
R
)

R

(
1+

b1√
µβ

)j

≥
[
min

(
R

m
,
√
R

)]
1

4
(
1+ b1√

µβ

)
1−

1− 4
max

(
m,

√
R
)

R

(
1+

b1√
µβ

)max(
√
R,m)


≥
[
min

(
R

m
,
√
R

)]
1

4
(
1+ b1√

µβ

) [1− e−4
]

≥ F2min

(
R

m
,
√
R

)
,

where the constant F2 ≜ 0.23≤ 1

4
(
1+

b1√
µβ

) [1− e−4] . To complete our proof, it suffices to show (54).

H.3.1. Proof of (54): Upper Bound on Pr (Lex = j|Lex ≥ j). To show the inequality (54), we begin by

giving an exact analysis of the probability Pr (Lex = j|Lex ≥ j) by analyzing the sample paths of N(t) at

the beginning of a renewal cycle, then afterwards apply some straightforward Markov chain analysis. In

particular, for two probabilities p(j)start and p(j)long and a parameter γ (to be defined later), we first show that

Pr (Lex = j|Lex ≥ j)≤min

(
p
(j)
long

γ
, p

(j)
start

)
. (55)

Afterwards, we bound these quantities, showing that, for some x∈ (0,1) and for all j ≤max
(√

R,m
)

,

min

(
p
(j)
long

γ
, p

(j)
start

)
≤ 2

max
(
m,

√
R
)

R

(
1+

b1√
µβ

)
min

(
1

x
,

1

1−x

)
. (56)

Since min
(

1
x
, 1
1−x

)
≤ 2, we obtain that

Pr (Lex = j|Lex ≥ j)≤ 4

(
1+

b1√
µβ

)max
(
m,

√
R
)

R
,

as desired. Thus, it suffices to show (55) and (56).
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H.3.2. Proof of (55). As previously stated, we begin by giving an exact analysis of the probability

Pr (Lex = j|Lex ≥ j). We make a recursive argument, based on a sequence of events (and their implicitly-

defined stopping times). Note that, if we were to write this explicitly, then we would need to invoke our

main lemma, Lemma 4.

First set of events. Assume that one begins at time τj , the first moment where one knows that Lex ≥ j;

note that, since at time τj we have just turned off the (R− j + 1)-th server, we know the number of jobs

N(t) = R− j + 1−m. From here, one can wait until one of two events happen: either 1) the number of

jobs N(t) decreases to (R− j −m), at which point Lex > j; or 2) the number of jobs N(t) increases to

(R− j + 1), at which point the event [Lex = j] still has a chance to occur. We call the probability of the

latter event p(j)start; we think of this as a “starting” probability.

Second set of events. At the moment when N(t) reaches (R− j + 1), the number of jobs in the queue

Q(t) = 1. As such, we can again partition our sample paths based on whether: 1) Q(t) stays non-zero for a

full setup time, at which point [Lex = j]; or 2) Q(t) drops to 0 within a setup time. We call the probability

of the first event p(j)long.

Third set of events. In the case where the queue empties before a setup time has passed, the number

of jobs N(t) = (R− j) and we again can condition on the next event to happen: either 1) the number of

jobs N(t) decreases to (R− j −m), at which point Lex > j; or 2) the number of jobs N(t) increases to

(R− j+1), at which point the event [Lex = j] still has a chance to occur. We call the latter probability p(j)re ,

since it can be thought of as a “restart” probability. Note that, in the case where the number of jobs N(t)

rises, we have reached an identical state to that which initiates the second set of events; thus we can induct.

Result in terms of probabilities. From this analysis, it follows that

Pr (Lex = j|Lex ≥ j) = p
(j)
start

(
p
(j)
long +(1− p

(j)
long)p

(j)
re

(
p
(j)
long +(1− p

(j)
long)p

(j)
re (. . . )

))
= p

(j)
startp

(j)
long

1

1−
(
1− p

(j)
long

)
p
(j)
re

.

By noting that the behavior of N(t) in the first and third scenarios is sample-path-equivalent to the behavior

of an M/M/(R− j), and that the behavior of N(t) in the second scenario is sample-path-equivalent to that

of an (overloaded) M/M/1, we can analyze these probabilities. In Section I.2, we show via basic Markov

chain analysis that p(j)re = 1− γp
(j)
start, where γ ≜ (R−j)!

(R−j−m)!
1
Rm

≤ 1. It follows that both

p
(j)
startp

(j)
long

1

1−
(
1− p

(j)
long

)
p
(j)
re

= p
(j)
start

p
(j)
long

p
(j)
long +

(
1− p

(j)
long

)
γp

(j)
start

≤ p
(j)
start

and

p
(j)
startp

(j)
long

1

1−
(
1− p

(j)
long

)
p
(j)
re

= p
(j)
long

p
(j)
start

γp
(j)
start +

(
1− γp

(j)
start

)
p
(j)
long

≤
p
(j)
long

γ
,
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and thus that

Pr (Lex = j|Lex ≥ j)≤min

(
p
(j)
long

γ
, p

(j)
start

)
,

as desired.

H.3.3. Proof of (56): Upper Bound on p(j)start and p(j)long. To complete our analysis of Pr (Lex = j|Lex ≥ j),

it suffices to bound the probabilities p(j)long and p(j)start, and the constant γ. To upper bound the probability p(j)long,

we note that, from the analysis in Section G.6.1,

p
(j)
long ≤ 1−

(
1− j

R

)(
1− b1√

µβR

)
=

b1√
µβR

+
j

R

(
1− b1√

µβR

)

≤

(
j+ b1

√
R√
µβ

)
R

≤
(
1+

b1√
µβ

)√
R

R

≤
(
1+

b1√
µβ

) 2max
(√

R,m
)

R
.

To bound the constant γ, we note that, defining x≜
(
1− j+m

R

)m
,

γ ≜
(R− j)!

(R− j−m)!

1

Rm
≥
(
R− j−m

R

)m
=

(
1− j+m

R

)m
≜ x.

To upper bound the probability p(j)start, we use the analysis from Section I.2, which shows that

p
(j)
start ≤

j+m

R

1

1−
(
1− j+m

R

)m+1

≤ j+m

R

1

1−
(
1− j+m

R

)m
=
j+m

R

1

1−x

≤
2max

(√
R,m

)
R

1

1−x

≤
(
1+

b1√
µβR

) 2max
(√

R,m
)

R

1

1−x
.

Thus, from (55), we have that

Pr (Lex = j|Lex ≥ j)≤min

(
p
(j)
long

γ
, p

(j)
start

)

≤
(
1+

b1√
µβR

) 2max
(√

R,m
)

R
min

(
1

x
,

1

1−x

)

≤ 4

(
1+

b1√
µβ

)max
(
m,

√
R
)

R
,
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as desired. Thus, we complete our proof of Claim 25, our lower bound on E [Lex].

H.4. Proof of Lemma 9, the Cycle Length Upper Bound.

Preliminaries: Cycle decomposition. We now prove Lemma 9, an upper bound on the expected cycle

length E [X]. As before, we begin by breaking a renewal cycle into three parts; we later analyze each part

separately. To do so, we define a threshold H and two stopping times; the latter stopping time will depend

on H . To begin, noting that R is the minimum number of servers needed to stabilize the system, we define

the threshold H ≜min
(
k−R,

√
R
)

as the minimum between (k−R), the number of “extra” servers, and
√
R, a quantity which represents the “typical variation” in the system. Next, we define the accumulation

time TA ≜ min{t≥ 0 : On(t)≥R+1} as the first moment that the (R + 1)-th server turns on. Finally,

we define the draining time TB ≜min{t≥ TA :N(t)≤R+H} as the first moment after time TA that the

number of jobs N(t) dips below the threshold (R+H).

Preliminaries: Definition of phases. With these two stopping times defined, our renewal cycle takes

on a similar decomposition as before. From time 0 to time TA, the number of servers that are on is ≤

(R+1), meaning that the departure rate of jobs must be less than the arrival rate of jobs. Accordingly, jobs

accumulate and thus we call this the accumulation phase. From time TA to time TB , the number of servers

on is ≥ (R+ 1), meaning that, on the whole, the accumulated jobs are draining from the system; thus we

call this the draining phase. From time TB to the end of the cycle at time X , the behavior of the system

roughly resembles that of a balanced random walk; we thus call this period the balanced phase.

Proof strategy. Using this decomposition, we prove the following bounds on the expected length of each

phase: for the accumulation phase [0, TA)

E [TA]≤ 1.08β, (57)

for the draining phase [TA, TB)

E [TB −TA]≤ β+E1

µβ
√
R

µH
, (58)

and for the balanced phase [TB,X)

E [X −TB]≤E3

1

µ
+E10β. (59)

Putting these together, we confirm that

E [X]≤ F3β+F4

µβ
√
R

µ(k−R)
.

In what follows, we briefly discuss the proof of each of these inequalities in turn.
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H.4.1. Proof of (57): Bound on E [TA]. For the bound on E [TA], our previous proof still applies:

since On(t) ≤ R until time TA, we can couple the system to an M/M/R queue and bound the length of

an analogous version of TA in that system. To review the argument, we can alternatively define TA =

min
{
t≥ 0 : mins∈[t−β,t]N(t)≥R+1

}
as the first moment that the number of jobs N(t) stays above (R+

1) for a full setup time β. If we let Ñ(t) denote the number of jobs in a coupled M/M/R queue starting

with Ñ(0) = (R−m), then we can accordingly define T̃A as the first moment that the coupled number of

jobs Ñ(t) stays above (R + 1) for a full setup time β. Since the departure rate of the original system is

upper-bounded by the departure rate of this coupled M/M/R system, the original system always contains

more jobs, i.e. N(t)≥ Ñ(t). It follows that TA ≤ T̃A and thus it suffices to bound E
[
T̃A

]
; Section B.5 tells

us that

E [TA]≤E
[
T̃A

]
≤ 1.08β,

which completes the proof.

H.4.2. Proof of (58): Bound on E [TB −TA]. For the bound on E [TB −TA], our strategy again is to

derive a bound on the conditional expectation of [TB −TA], where we condition on the number of jobs in the

system at time TA, and afterwards give a bound on both the first and second moments of this number of jobs

N(TA). Actually, in this case, our conditional bound from Section 6.4 still applies; by making worst-case

assumptions about the system’s setup state at time TA and noting that, if the number of jobs stays large for

a full setup time then many servers must be on, we can use a combination of random walk and busy period

analysis to obtain

E [TB −TA|FTA ]≤ β+
N(TA)−R

µH
+

1

µ
ln

(
N(TA)−R

H

)
; (60)

see Section 6.4 for details. To complete our bound of the draining phase, we must bound the expected value

E [N(TA)]; we defer the proof of this bound to Section I.1. There, we find that

E [N(TA)−R]≤E1µβ
√
R, . (61)

where E1 ≜ 5.21. Thus, combining (61) with (60) (and noting that x+ln(x)

x
≤ 1+ 1

e
), we find that

E [TB −TA]≤ β+E
[
N(TA)−R

µH

]
+

1

µ
E
[
ln

(
N(TA)−R

H

)]
≤ β+

E [N(TA)−R]

µH
+

1

µ
ln

(
E [N(TA)−R]

H

)
≤ β+

(
1+

1

e

)
E [N(TA)−R]

µH

≤ β+1.37E1

µβ
√
R

µH
.

H.4.3. Proof of (59): Bound on E [X −TB].
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Main idea: Threshold-based division. To bound the final portion of the renewal cycle, E [X −TB], we

divide time based on the threshold H and make a coupling argument. More specifically, we make an argu-

ment based on whether the number of jobs N(t) is below or above the threshold (R+H). First, we note

that, when the number of jobs N(t) is below (R + H), the departure rate of jobs is lower-bounded by

µmin(R,N(t)). Said differently, while below (R+H), the number of jobs N(t) is upper-bounded by the

number of jobs in an appropriately-coupled M/M/R/(R+H) queue. On the other hand, when the number

of jobs N(t) becomes larger than (R+H), we can use the “wait-busy” period idea of the previous phase

to bound the amount of time it takes for number of jobs N(t) to come back down to (R+H); we call this

an excursion.

The below-threshold case. To analyze the below-threshold portion of time, we make a coupling argument

based on our above departure rate bound. If we let TM/M/R/(R+H)

(R+H)→(R−m) to be the time it takes for an M/M/R/(R+

H) to go from (R +H) jobs in the system to (R −m) jobs in the system, then, from a straightforward

coupling argument, the time spent below (R+H) can be upper-bounded by E
[
T

M/M/R/(R+H)

(R+H)→(R−m)

]
. As such,

it suffices to bound the expectation of this first passage time, which, for m≤
√
R, was done in Claim 22.

This gives

E [time spent with N(t)≤R+H]≤E
[
T

M/M/R/(R+H)

(R+H)→(R−m)

]
≤ 7

m+H

µ
√
R

≤ 7

√
R+min

(√
R,k−R

)
√
R

1

µ

≤ 14
1

µ
.

The above-threshold case. To analyze the above-threshold portion of time, we bound the number of

excursions and use the “wait-busy” idea to bound the length of an excursion. To bound the number of

excursions, we note (by our below-threshold coupling argument) that the probability of having an additional

excursion is upper-bounded by the probability that, in an M/M/R queue started with (R+H) jobs in the

system, the queue reaches (R+H + 1) jobs in system before it reaches (R−m) jobs in system; we call

this probability pe. Accordingly, the number of excursions is stochastically dominated by a Geo(1− pe)−1

random variable, and thus the expected number of excursions is bounded by 1
1−pe ; we give an explicit bound

on pe later, showing that
1

1− pe
≤
√
R
(
1+ e

m(m+1)
R−m

)
, (62)

which, for m≤
√
R and R≥ 100, can be bounded by

1

1− pe
≤
√
R

(
1+ e

√
R+1√
R−1

)
≤ 4.4

√
R.
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Next, by using the “wait-busy” idea of the previous phase, previous arguments tell us that, for b1 =
√

2
π

,

E [length of an excursion]≤ 1

µ
b1

√
µβ

R
+

1

µH
. (63)

Thus, we obtain that for µβ ≥ 100,

E [time spent with N(t)>R+H]≤ 1

1− pe
·

[
1

µ
b1

√
µβ

R
+

1

µH

]

≤ β
4.4b1√
µβ

+
4.4

√
R

µH

≤ 0.36β+
4.4

√
R

µH
.

We arrive at the following bound on E [X − (TA+TB)]:

E [X −TB]≤E [time spent with N(t)≤R+H] +E [time spent with N(t)>R+H]

≤ 14
1

µ
+0.36β+

4.4
√
R

µH

≤ 0.5β+
4.4

√
R

µH
.

H.4.4. Proof of Lemma 9: Closing. As mentioned, with (57),(58), and (59) proven, we complete our

bound on E [X] by simple addition:

E [X] =E [TA] +E [TB −TA] +E [X −TB]

≤ 1.08β+β+1.37E1

µβ
√
R

µH
+0.5β+

4.4
√
R

µH

≤ 2.6β+7.2
µβ

√
R

µH

= F3β+F4

µβ
√
R

µH
,

where we have taken F3 ≜ 2.6 and F4 ≜ 7.2.

Appendix I: Miscellaneous Claims: Analysis of m-Policies

I.1. Proof of (61): Upper Bound on E [N(TA)−R] for m-Policies

Here, we discuss our bound on the expected value of the number of jobs E [N(TA)−R] for m-policies. In

particular, we show that

E [N(TA)−R]≤E1µβ
√
R, .

where E1 ≜ 5.21.
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Definition of epoch. To do so, we again make use of the notion of epochs. Recall that time τj ≜

min{t≥ 0 : On(t)≤R− j} is the first moment that only (R − j) servers are on. We call the period[
τj,min(τj+1, TA)

)
the j-th epoch, and we say epoch j occurs if the time τj happens before time TA. As a

shorthand, we use ne to denote the number of epochs that occur; note that the condition [epoch j occurs] is

equivalent to the condition [ne ≥ j].

Definition of a trial. To analyze the time TA more closely, we define a series of trials. The first trial in

epoch j (that is, the (1, j)-th trial) begins at the first moment that N(t) ≥ R+C3

√
µβR during epoch j.

We say this trial succeeds if the number of jobs N(t) does not drop below (R+ 1) for a full setup time;

otherwise, we say that this trial fails. If, in the same epoch, the number of jobs N(t) again reaches (R+1),

then the next trial begins and may either succeed or fail; this continues until either the next epoch begins or

a trial succeeds. We refer to the i-th trial to occur in epoch j as trial (i, j).

We now note that

E [N(TA)−R]≤C3

√
µβR+

∑
i,j

Pr (trial (i, j) occurs)E
[
[N(TA)−R]1trial (i, j) succeeds

∣∣trial (i, j) occurs
]
.

(64)

To analyze this conditional expectation, we note that, if trial (i, j) occurs at time ϕi,j and this trial is suc-

cessful, then time TA = (ϕi,j +β). On the other hand, let ψi, j ≜min{t > 0 :N(ϕi,j + t)<R+1} be the

next moment the number of jobs N(t) falls below (R+1); we make two points. First, the trial succeeds if

and only if ψi,j ≥ β. Second, if the trial fails, then [N(ψi,j)−R] = 0. As such,

[N(TA)−R]1trial (i, j) succeeds = [N (ϕi,j +min(ψi,j, β))−R] .

Noting that V (t)≜N(ϕi,j + t)−R− µjt is a super-martingale (since we are in epoch j), it follows from

Doob’s Optional Stopping Theorem that

V (0) =C3

√
µβR

≥E [V (min (ψi,j, β))]

=E
[
[N (ϕi,j +min(ψi,j, β))−R]

∣∣Fϕi,j]−µjE
[
min(ψi,j, β)

∣∣Fϕi,j] ,
and thus that

E
[
[N(TA)−R]1trial (i, j) succeeds

∣∣trial (i, j) occurs
]
≤C3

√
µβR+µjE [min (ψi,j, β)|trial (i, j) occurs] .

Reduction to trial quantities. Applying this to (64),

E [N(TA)−R] =
∑
i,j

Pr (trial (i, j) occurs)E
[
[N(TA)−R]1trial (i, j) succeeds

∣∣trial (i, j) occurs
]

≤
∑
i,j

Pr (trial (i, j) occurs)
[
C3

√
µβR+µjE [min (ψi,j, β)|trial (i, j) occurs]

]
≤C3

√
µβRE [total number of trials] +

∑
j

µjE [total time spent on trials during epoch j].
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To address the first term, we note that for each trial which occurs, according to Claim 3, with probability

at least
[
1− 2Φ

(
− 3√

2

)
− 1

100

]
≥ 0.95≜C4 the first phase ends. It follows that E [total number of trials]≤

1
0.95

.

To address the second term, we note that

E [total time spent on trials during epoch j]

= Pr (trial (1, j) occurs)E [time spent on trials during epoch j|trial (1, j) occurs]

≤Pr (trial (1, j) occurs)E [time remaining in first phase|trial (1, j) occurs]

≤Pr (trial (1, j) occurs)E
[
T̃A

]
≤Pr (trial (1, j) occurs) 1.08β,

where the final inequality is via coupling the system to an M/M/R queue in the same way as in Section B.5.

Defining G1 ≜ 3.3> 1
0.95

C3 and G2 ≜ 1.08, we find that

E [N(TA)−R]≤G1

√
µβR+G2µβ

∑
j

jPr (trial (1, j) occurs).

Development using epochs. From here, we note that p(j)rise ≜ Pr (trial (1, j) occurs|ne ≥ j) and thus it

suffices to bound Pr (ne ≥ j). To provide an upper bound on the probability that epoch j, it suffices to show

a lower bound on the conditional probability Pr (ne = j|ne ≥ j). In Section G.3, we have already shown

that

Pr (ne = j|ne ≥ j)≥ (1−C4p
(j)
rise);

applying this bound, one finds that

Pr (ne ≥ j)≤
j−1∏
i=0

(
1−C4p

(i)
rise

)
.

Thus, we obtain

∑
j

jPr (trial (1, j) occurs)≤ 1

C4

∑
j

C4p
(j)
risej

j−1∏
i=0

(
1− p

(i)
rise

)
=

1

C4

∑
j

j∏
i=0

(
1−C4p

(i)
rise

)
.

From here, it suffices to lower bound p(i)rise.

I.1.1. Lower bound on p(j)rise. To bound the probability that the number of jobsN(t) reaches the threshold

R+C3

√
µβR at some point during epoch j, we focus on one particular manner in which that event might

happen. To define this manner, we introduce the notion of an excursion. We do so recursively: the first

excursion in epoch j occurs the moment the number of jobs reaches (R − j + 1), and ends when either
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1) the number of jobs N(t) dips back down to (R− j) or 2) a full setup time has passed. If a full setup

time passes during an excursion, we call it long; otherwise, we call it short. Successive excursions occur

whenever an up-crossing of (R − j) occurs, but only if every previous excursion in the epoch has been

short. Thus, we can lower bound the probability of reaching the desired threshold by requiring that it occurs

before the epoch’s first long excursion, i.e.

p
(j)
rise ≥ p

(j)
start

(
pth + pfp

(j)
re pth +

(
pfp

(j)
re

)2
pth + . . .

)
= pthp

(j)
start

1

1− pfp
(j)
re

where we have used the fact that the system state is the same at the beginning of every excursion, and where

we have defined pth as the probability that the number of jobs N(t) crosses the threshold during excursion

(1, j), defined p(j)re as the probability that, after a short excursion, another excursion occurs, defined p(j)start as

the probability that an excursion occurs, and defined pf as the probability that the excursion is both short

and ends without N(t) having reached the desired threshold. We arrive at the following claim, proven in

Section I.4:

CLAIM 26. Recall the definitions of pth, pf , p
(j)
re , and p(j)start. Then, for j ≥

√
R, we have the following bound

pthp
(j)
start

1

1− pfp
(j)
re

≥E6

j

R
≥E6

1√
R
,

where E6 = 0.32.

Accordingly, we find that

E [N(TA)−R]≤G1

√
µβR+G2µβ

1

C4

R−m∑
j=0

j∏
i=0

(
1−C4p

(i)
rise

)

≤G1

√
µβR+G2µβ

1

C4

√R R−m∑
j=

√
R

j∏
i=0

(
1−C4p

(i)
rise

)
≤G1

√
µβR+G2µβ

1

C4

√R+
∑
j=

√
R

(
1−C4E6

1√
R

)[j−√
R]

+


=G1

√
µβR+µβ

√
R
G2

C4

[
1+

1

C4E6

]
= µβ

√
R

(
G2

C4

[
1+

1

C4E6

]
+

G1√
µβ

)
≤E1µβ

√
R

as desired, where we have taken E1 ≜ 5.21 >
(
G2
C4

[
1+ 1

C4E6

]
+ G1√

100

)
. Thus, we have shown (61), an

upper bound on the quantity E [N(TA)−R] for m-policies.
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I.2. Bounds on hitting probabilities for an M/M/∞ queue.

We now analyze a general hitting probability problem in the M/M/∞ queue. In particular, we consider the

case where the arrival rate is kλ= µR, and define an upper and lower boundary of b and a respectively. We

then find the probability that, starting from state i, we hit the upper boundary state b before we hit the lower

boundary point a; we call this probability pup
i .

I.2.1. Solving for pup
i . We solve for these probabilities using the usual finite difference method. We first

note our boundary conditions: the probabilities at the boundaries are pup
a = 0 and pup

b = 1. From here, we

note that, by a conditioning argument,

pup
i =

R

R+ i
pup
i+1 +

i

R+ i
pup
i−1.

After some algebra, we obtain that, defining ∆i = pup
i+1 − pup

i ,

pup
i+1 − pup

i

pup
i − pup

i−1

=
i

R
=

∆i

∆i−1

.

This shows that

∆i =
i

R
· i− 1

R
· · · · · a+1

R
·∆a =

(i)!

(a)!Ri−a∆a.

Using our upper boundary condition, we have

1 = pup
b = (pup

b − pup
b−1)+ (pup

b−1 + pup
b−2)+ · · ·+(pup

a+2 − pup
a+1)+ (pup

a+1)

=

b−1∑
i=a

∆i

=∆a

b−1∑
i=a

(i)!

(a)!Ri−a .

Thus we have that

∆a = pup
a+1 =

1∑b−1

i=a
(i)!

(a)!Ri−a

=
1∑b−1−a

i=0
(i+a)!

(a)!Ri

. (65)

Notably, we also have that

pup
b−1 = 1−∆b−1 = 1− (b− 1)!

(a)!Rb−1−a∆a. (66)

I.2.2. Bounds on ∆a. We now give two upper bounds and a lower bound on ∆a by bounding the sum in

its denominator, using a=R− j−m and b=R− j+1. For the first upper bound on the denominator,

b−1−a∑
i=0

(i+ a)!

(a)!Ri
=

m∑
i=0

(R− j−m+ i)!

(R− j−m)!Ri

=

m∑
i=0

i∏
ℓ=1

R− j−m+ ℓ

R

≤
m∑
i=0

i∏
ℓ=1

e−
(j+m)
R + ℓ

R
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=

m∑
i=0

e−
(j+m)i
R +

i(i+1)
2R

=

m∑
i=0

e−
i
R [j+m− i+1

2 ]

≤
m∑
i=0

e−
i
R [j+

1
2m− 1

2 ]

≤ 1

1− e−
j+1

2 (m−1)

R

.

Thus, we find that

pup
a+1 ≥ 1− e−

j+1
2 (m−1)

R . (67)

For the second upper bound on the denominator,

b−1−a∑
i=0

(i+ a)!

(a)!Ri
=

m∑
i=0

(R− j−m+ i)!

(R− j−m)!Ri

=

m∑
i=0

i∏
ℓ=1

R− j−m+ ℓ

R

≤
m∑
i=0

(
R− j

R

)i
=
R

j

(
1−

(
1− j

R

)m+1
)

≤ R

j
.

This in turn gives

pup
a+1 ≥

j

R
. (68)

Likewise, for a lower bound on the denominator,

m∑
i=0

i∏
ℓ=1

R− j−m+ ℓ

R
≥

m∑
i=0

(
1− (j+m)

R

)i
=

R

j+m

(
1−

(
1− (j+m)

R

)m+1
)
.

Thus, we find that

pup
a+1 ≤

j+m

R

1(
1−

(
1− (j+m)

R

)m+1
) . (69)

I.2.3. Bounds on pup
b−1. Likewise, since pup

b−1 = 1− δb−1 = 1− (R−j)!
(R−j−m)!Rm

∆a, we also have that

[
1− pup

b−1

]−1
=
Rm(R− j−m)!

(R− j)!

m∑
i=0

(R− j−m+ i)!

(R− j−m)!Ri
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=

m∑
i=0

(R− j−m+ i)!Rm−i

(R− j)!

=

m∑
i=0

(R− j− i)!Ri

(R− j)!

≤
m∑
i=0

(
R

R− j−m

)i
=
R− j−m

j+m

[(
1+

j+m

R− j−m

)m+1

− 1

]

≤ R− j−m

j+m

[
e
(

(j+m)(m+1)
R−j−m

)
− 1

]
.

This tells us that 1− pup
b−1 ≥

j+m
R−j−m

[
e
(

(j+m)(m+1)
R−j−m

)
− 1

]−1

, or, equivalently,

pup
b−1 ≤ 1− j+m

R− j−m

[
e
(

(j+m)(m+1)
R−j−m

)
− 1

]−1

.

We likewise have that

[1− pup
b−1]

−1 ≤ (m+1)

(
R

R− j−m

)m
≤ (m+1)e

(j+m)m
R−j−m

≤ (m+1)e
(j+m)(m+1)
R−j−m .

Combining these two results, we obtain that

pup
b−1 ≤ 1−max

(
1

m+1
,
j+m

R

)
e−

(j+m)(m+1)
R−j−m .

Continuing on for the lower bound, we find that

[1− pup
b−1]

−1 ≥
m∑
i=0

(
R

R− j

)i
=
R− j

j

[(
1+

j

R− j

)m+1

− 1

]
,

so that,

pup
b−1 ≥ 1− j

R− j

[(
1+

j

R− j

)m+1

− 1

]
.

I.3. Proof of Claim 27: Bound on pe, an M/M/R hitting probability.

We now show the following claim.

CLAIM 27. Let pe be the probability that, in an M/M/R queue started with (R+H) jobs in the system, the

number of jobs reaches (R+H +1) before it reaches (R−m). Then,

1

1− pe
≤H +

√
Re

m(m+1)
R−m ≤

√
R
(
1+ e

m(m+1)
R−m

)
.
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We prove this claim by analyzing particular state transitions. Let Ti→j be the first passage time from state

i to state j, and when evaluating the event [Ti→a <Ti→b], consider the first passage times to be evaluated on

the same sample path. Then pe =Pr
(
T(R+H)→(R−m) <T(R+H)→(R+H+1)

)
. By conditioning, we have that

1− pe =Pr
(
T(R+H)→(R−m) <T(R+H)→(R+H+1)

)
=Pr

(
T(R+H)→R <T(R+H)→(R+H+1)

) [
Pr
(
TR→(R−m) <TR→(R+H+1)

)]
.

From here, note that

Pr
(
TR→(R−m) <TR→(R+H+1)

)
=Pr

(
TR→(R−m) <TR→(R+1)

)
+Pr

(
T(R+1)→(R−m) <T(R+1)→(R+H+1)

)
=Pr

(
TR→(R−m) <TR→(R+1)

)
+Pr

(
T(R+1)→R <T(R+1)→(R+H+1)

)
Pr
(
TR→(R−m) <TR→(R+H+1)

)
.

Note also that, from basic results on simple random walks, we have that

Pr
(
T(R+H)→R <T(R+H)→(R+H+1)

)
= 1

H+1
and Pr

(
T(R+1)→R <T(R+1)→(R+H+1)

)
= H

H+1
. Let pd ≜

Pr
(
TR→(R−m) <TR→(R+1)

)
. Then we have

1− pe =
1

H +1

[
pd+(1− pd)

H

H +1
(pd+ . . . )

]
=

pd
H +1

1

1− (1− pd)
H
H+1

=
pd

H +1−H + pdH

=
pd

1+ pdH
.

This tells us that
1

1− pe
=H +

1

pd
.

I.3.1. Analyzing pd. Since the M/M/R queue acts equivalently to the M/M/∞ queue between the statesR

and (R−m), to analyze the probability pd ≜Pr
(
TR→(R−m) <TR→(R+1)

)
, it suffices to analyze the appro-

priate hitting probability in the M/M/∞. Applying the result from Section I.2, noting that the probability in

question is 1− pup
b−1 in the case where j = 0, we find that

pd ≥max

(
1

m+1
,
m

R

)
e−

m(m+1)
R−m ≥ 1√

R
e−

m(m+1)
R−m .

Final bound on (1− pe)
−1 . Putting these together and noting that H ≜min

(√
R,k−R

)
≤

√
R, we

find

1

1− pe
=H +

1

pd

≤
√
R+

√
Re

m(m+1)
R−m

=
√
R
(
1+ e

m(m+1)
R−m

)
.
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I.4. Proof of Claim 26.

We now prove Claim 26; see Section I.1.1 for details.

First observations. To begin, we first recall that pf is the probability that a given excursion is both short

(that is, lasts for less than a setup time) and does not reach the appropriate threshold. From a union bound,

it follows that pf ≥ 1− (pth + p
(j)
long), where p(j)long is the probability that the excursion lasts for (at least) a

setup time. We also note that the “retrial” probability p(j)re = 1 − γp
(j)
start ≥ 1 − p

(j)
start. This follows from a

straightforward symmetry argument: since the associated Markov chain is biased towards gaining jobs, it

follows that the probability that the number of jobs increases by one before it decreases by m is higher than

the probability the number of jobs decreases by one before it increases bym. Putting these together, we find

that

pthp
(j)
start

1

1− pfp
(j)
re

≥ pthp
(j)
start

1− (1− p
(j)
long − pth)(1− p

(j)
start)

=
pthp

(j)
start

1− (1− p
(j)
start)+ (p

(j)
long + pth)(1− p

(j)
start)

≥ pthp
(j)
start

p
(j)
start + p

(j)
long + pth

.

Bounding the probabilities. From here, we note that, in Claim 6, we showed that pth ≥ 0.99 j
R

for any

j ≥
√
R. Likewise, applying the results from Section I.2, we find that p(j)start ≥ j

R
. To bound p(j)long, we use the

arguments from Section G.6, which show that

p
(j)
long ≤ 1−

(
1− j

R

)(
1− b1√

µβR

)
≤ j

R
+

b1√
µβR

≤ j

R

(
1+

b1√
µβ

)
.

Completion of the proof of Claim 26. Combining these, we find that

pthp
(j)
start

1− pfp
(j)
re

≥
0.99 j

R
· j
R

j
R
+0.99 j

R
+ j

R

(
1+ b1√

µβ

) =
j

R

(
0.99

2.99+ b1√
µβ

)
≥ j

R
(0.32).
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