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1 Introduction

1.1 Motivation

Multiserver systems matter. Efficient resource provisioning in modern mul-
tiserver systems is an important problem. The entire fabric of modern society
—from politics, to art, to industry— is interwoven with technology enabled by
cloud computing. In the natural sciences, high performance computing forms
the backbone of much of our most advanced research. And although comput-
ing is perhaps the most prominent example of a multiserver system, our daily
lives are filled with them: we wait to purchase things at the supermarket, we
wait for a website to load, we wait to be seen at the hospital, etc. In each of
these situations, how much time we spend waiting to receive service-the delay
we experience—can matter a great deal to us. An important determining fac-
tor in a multiserver system’s delay is its number of servers. As the number of
servers increase, the lighter the load each individual server needs to bear, and
the shorter a customer must wait before receiving service. As such, one of the
primary problems in resource provisioning is deciding how many servers a given
multiserver system needs.

Resource provisioning is hard. Unfortunately, determining the right num-
ber of servers for a system can be quite difficult, especially since service demand
can vary significantly across time [21]. Because demand varies over time, a
robust service system must retain enough service capacity that, when demand
spikes, quality of service does not suffer. From a datacenter standpoint, this
thinking applied at the user-level leads to huge over-subscription of resources,
and chronic underutilization of those resources. For examples of both underuti-
lization and demand variation, we examine Google’s Borg system in Figure 1.1:
utilization rarely reaches above 60%, and there is considerable day-to-day and
week-to-week variation in that utilization. Although they have technically been
allocated to users, a large fraction of servers are on but not working, leading
to incredible energy waste. To mitigate this idling/variability problem, many
systems implement some form of dynamic capacity scaling, where the amount
of compute allocated to an application are scaled up and down in reaction to
its current or estimated utilization.
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Figure 1: The average utilization over 8 of Google’s compute clusters (cells).
Note that 1) utilization is low and 2) utilization varies considerably throughout
the day. Originally appeared as Figure 2b in [21].

1.2 Problem Statement

While some companies have had great success in increasing the efficiency of
their systems by using dynamic scaling, those efficiency gains are necessarily
not without performance losses. Because servers do not turn on instantly but
require a setup time before they are ready to serve jobs, the delay performance
of a dynamically-scaled system must be necessarily worse than a system where
all servers are kept on at all times. Thus, each dynamic scaling policy poses
two unique problems. When using a given policy, 1) “how much worse is the
delay performance?”’ and 2) “how much better is the energy efficiency?” We
focus on the first question, asking more generally: “How do setup times
affect the delay performance of modern multiserver systems?” Given
the large space of possible scaling policies and the risk involved in deploying
a bad scaling policy, a theoretical understanding of this question could prove
quite useful for the prospective provisioner.

1.2.1 Thesis Statement

In this thesis, I will demonstrate that setup times can not be ignored;
setup times can cause profound increases in waiting time, especially
when the distribution of setup time has low variability.

1.2.2 Main Obstacle

The main obstacle to analyzing multiserver systems with setup times is finding
a way to handle their complicated dynamics. Consider the M/M/k queueing



system without setup times. The M/M/k is a simple birth-death process where
the departure rate is a very simple function of the number of jobs N(¢), which
is the only state variable. When augmenting the system with setup times,
one must separately consider the number of jobs in the queue Q(¢) and the
number of jobs in service Z(t). Even if one models setup times as memoryless
by making the setup time distribution Exponential, the resulting continuous-
time Markov Chain still has no known closed-form solution; the state-of-the-art
for these problems is an algorithm for steady-state expectations of interest, when
analyzing the set of systems with a specific number of servers [11]. In this work,
we aim to bound the performance of real multiserver systems with setup, and
so must do away with the Exponential assumption, making things apparently
even harder. Now, instead of just tracking the jobs in queue Q(¢) and the jobs
in service Z(t), we must also track the the remaining setup time of each server,
the vector W ().

1.3 Summary of the State-of-the-Art

Summary. Many people have recognized the importance of studying dynamic
capacity scaling. The study of the negative effect caused by setup times arguably
began with Welch in [22], where he analyzed the delay behavior of the M/G/1
with general setup times. Since then, many works have attempted to progress
our understanding of setup times; some by extending Welch’s results to new
service disciplines[2, 12, 3] and others by investigating the effect of setup in
multiserver systems [1, 7, 11, 19, 5, 18, 17, 16, 10, 6]. Unfortunately, previous
research around dynamic capacity scaling has had two major shortcomings.

First major shortcoming: setup ignored. First, most research has ig-
nored or elided the effect of setup times. One can easily see why: including a
“remaining setup time” value for each server can hugely increase the dimension-
ality of a service system state space, and make the dynamics hard to analyze.
However, there are only two cases where it would be reasonable to ignore the
effect of setup times on queueing: if setup times are either extremely small or
extremely large. If setup times are extremely small, then they can have only a
correspondingly small effect on response time. On the other hand, if setup times
are extremely large, then it no longer makes sense to consider the dynamics of
setup on the behavior of a system.

However, in modern multiserver systems, neither of these are the case: setup
times are short enough that we can reasonably consider dynamically provisioning
servers to keep the queue from getting too large, but not so short that if every job
had to wait for an entire setup time, then that would be a negligible addition to
the delay. In reality, modern setup times can be around a minute while desired
response times have shrunk to the tens of milliseconds —setup times can now be
a thousand-fold larger than service times [10, 15, 20].

Moreover, we know from simulation that when the number of servers gets
large, systems with setup times have much larger delay than systems without
setup. In Figure 2, we hold the load and setup time constant while varying the
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Figure 2: Simulation results for the M/M/k/Setup-Deterministic,
M/M/k/Setup-Exponential, M/M/k (no setup), with g = 1, setup time
é = 1000, and load kept at a constant p = 0.5. While there’s a huge difference
between no-setup and setup, there’s also a considerable difference in the shape
of the curves for Exponential and Deterministic setups.

number of servers k£ and observe that the delay of systems with setup seem to
decay only polynomially with k, while the delay of a system without setup is
known to decay exponentially quickly. This difference in delay scaling behavior
leads to observed delays which are millions of times larger in systems with
setup. Even so, setup times continue to be largely ignored theoretically, due to
the dimensionality issue mentioned earlier.

Second major shortcoming: Exponential setup times. To sidestep this
dimensionality problem, theoretical works which study the effect of setup times
in multiserver systems universally assume that a server’s setup time is i.i.d.
Exponential; this Exponential assumption, it turns out, is the second major
shortcoming of previous research. In reality, setup time distributions are much
less variable than the Exponential —a virtual machine’s boot time, for example,
is essentially Determinstic after conditioning on the boot image size [15]. More
to the point, modeling setup times as Exponential can hide the negative effect
that setup time can have in large systems. Investigating this via simulation,
we simulated the behavior of an M/M/k under a natural scaling policy, and
plotted the expected time in queue as the number of servers k increased. Shown
again in Figure 2, our results demonstrate that models using Exponential setup
can have expected queueing times which are orders of magnitude smaller than
models using Deterministic setup. Consequently, those using the behavior of
an Exponential system to predict the behavior of a Deterministic system would
vastly underestimate the negative effect that setup times have on queueing per-



formance.

1.4 Key Ideas

As mentioned before, the main difficulty in analyzing the M/M/k with setup
times lies in keeping track of the complicated dynamics of the remaining setup
time vector W (t), and tracking the interaction of W (¢) with the number of
busy servers Z(t). Before I discuss how our method enables us to bypass this
difficulty, I briefly explain our method.

Method: Stopping Time Decomposition. The method we have developed
proceeds in three steps. First, one applies the Renewal Reward theorem, which
states that, for a particular kind of stopping time X,

E UOX Q(t)dt] E [fOX Q(t)dt}
I T

where the final state S(X) is the same as the initial state S(0). Thus, to bound
E [Q(00)], it suffices to bound the integrals in the numerator and denominator
of (1). In the second step, we take the interval [0, X) and use various stopping
times to divide it into even more intervals; we divide our integral over these same
stopping times. After making the intervals of interest sufficiently small, we use
coupling to bound the dynamics over these small intervals, and use martingale
theory to bound the integrals of our coupled processes.

E[Q(c0)] (1)

How it helps. Defining our stopping times in the right way allows us to
bypass many of the problem’s natural difficulties for three reasons. First, we
can define our stopping times so that we reduce our focus to only the most
critical moments during a renewal cycle, e.g., in an upper bound, we can track
the first moment the queue exceeds a certain size. Second, we can define our
stopping times so that we gain information about the current state, which allows
us to have a tight handle on the system’s dynamics in the near-future. Third,
since the minimum between two stopping times is itself a stopping time, we can
combine both of these approaches to get a very detailed breakdown of a given
renewal cycle.

1.5 Key Results

Main result. To support this statement, I provide the first analysis of a
dynamically-scaling multiserver system with Deterministic setup times. In par-
ticular, I characterize the expected queueing time E [Tg] in the M/M/k/Setup-
Deterministic, a variation on the M/M /k queueing system, showing that

Theorem 1 (Simplified scaling version).

(o] = © (fsetup time] )
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Figure 3: Comparison of our lower and upper bounds for the M/M/k/Setup-
Deterministic with simulation results for the M /M /k/Setup-Deterministic and
M/M/k/Setup-Exponential, with p = 1, setup time é = 1000, and load kept at
a constant p = 0.5. Our bounds clearly follow the shape of the M/M/k/Setup-
Deterministic. The shape of the M /M /k/Setup-Exponential is quite different.

where the load p is the time-average fraction of servers actively working on jobs
and where in the scaling of ©, the load p must be kept in ‘ghe sub-Halfin-Whitt
regime while & and [setup time] jointly scale, with Isetup time] ",y (kp). For

X service time
reference, if [setup time] -, 1000, then this In(kp) condition remains satisfied all

service time —
the way up until £ > 10190,

Beyond the result proven, the method I have developed provides explicit
lower and upper bounds on E [Tg], as seen in Figure 3. This method uses a
combination of renewal theory, martingales, and coupling to reduce the prob-
lem of bounding E [Q(0c0)] to some more basic probability problems. Given its
success at solving this long-standing problem, this method itself could be of

independent interest.

1.6 Takeaways

I now discuss the takeaways of our theorem, using Figure 3 as an illustrative
example. In Figure 3, we plot the mean delay of a job in 1) the M/M /k without
setup, 2) the M/M/k with Exponential setup times, and 3) the M/M/k with
Deterministic setup times, along with our proven delay bounds. We scale the
number of jobs k while holding the load p = 0.5, service time % = 1s, and setup
time i = 1000s constant. We use a log-log scale to better illustrate the difference
in scaling behavior; in this log-log plot, functions decaying polynomially in k&
will appear like straight lines (with negative slope), while functions decaying
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Figure 4: Provisioning comparison of our lower and upper bounds for the
M/M/k/Setup-Deterministic with simulation results for the M/M/k/Setup-
Deterministic and M/M/k/Setup-Exponential, where [service time] = 100 ms,
setup time é = 100 s, and load is kept at a constant p = 0.5. The dashed ex-
tension to the Deterministic line is projected. A red dot pinpoints the moment
each system (or bound) begins to meet the delay target of 33 ms. We find that
the no-setup and Exponential systems vastly underestimate the required value
of k.

exponentially in k will appear like negative exponentials, since
In (e*Ck) = —ck = —c2'98(h)

We can plainly see the difference in scaling behavior between the no setup
system, the Exponential setup system, and the Deterministic setup system.
As expected classically, the mean delay of the no setup system is decaying
exponentially in k. And, in confirmation of our bounds, the mean delay of the
Deterministic setup system can be seen to decay like k~/2. As predicted, our
bounds seem to be off by a constant factor, and our lower bound is, at least in
this plot, able to separate the performance of the Exponential and Deterministic
systems.

1.7 Impact

The most direct impact of Theorem 1 is on provisioning.For example, suppose
we chose to use the M/M/k/Setup policy in our datacenter and we were won-
dering how many servers we need in order to secure good delay performance;
moreover, assume that, as usual, that setup times are deterministic and large
in this datacenter. Theorem 1 tells us two things.

First it tells us that, if we keep the offered load kp the same while increasing
the number of servers k, then the queueing performance of our system won’t



actually improve. Our analysis shows that, instead, the number of busy servers
will simply perpetually oscillate around kp, with most of the servers unused.
In some sense, the system is kept perpetually in the Halfin-Whitt regime, with

_ [service time] 1 . . . .

Pet = 1 — “[setup fime] Va5 1P to a point, it actually improves performance to
scale up the offered load kp.

Furthermore, if a system provisioner tried to figure out how big they would
need to scale up their system before they reached a desired mean delay, and they
modelled their system using either the M/M /k without setup or the M/M /k with
Exponential setup, then they would vastly underestimate how much their system
must grow. We illustrate this point in Figure 4. As before, we set the service
time to 100 ms, the load p to a constant 0.5, the ratio % to 1000, and
examine the drop in mean delay as the number of servers k increases. We then
check how large the k must become before each system reaches the delay target.
Comparing them, the no-setup system reaches the target delay when k = 2, the
Exponential-setup system reaches the target delay when k£ = 1024, but even the
lower bound for the Deterministic-setup system only reaches the target delay
when k£ = 65536. When it comes to provisioning problems like these, it is
absolutely vital that the provisioner models setup times as Deterministic.

1.8 Outline

In the remainder of this document, I explain my thesis work in more detail, and
propose a few additional problems whose solutions I think will greatly enhance
the overarching story being told here. To be specific:

e In Section 2, I give an in-depth description of M /M /k/Setup model.

e In Section 3, I give a brief summary of the previous work analyzing mul-
tiserver systems with setup times.

e In Section 4, I explain a few of the key techniques used in the proofs of
the main results.

e In Sections 5 and 6, I describe the approach we take to prove the lower
bound (and upper bound, resp.) on E [Tg], and give a brief summary of
my status on each project.

e In Section 7, I outline a few problems which I believe would augment my
existing work most convincingly.

e In Section 8, I lay out a timeline for completing the remaining work and
writing up the final thesis document.

2 Model

We begin by formally describing our model, referred to as the M/M/k/Setup-
Deterministic, which is a variant on the M/M/k queueing system. An example
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Figure 5: An example of M/M/k/Setup-Deterministic with & = 6. The state
pictured has Z(t) = 2 busy servers, which means there are 2 jobs in service.
There are Q(t) = 2 jobs in queue, and thus N(t) = Z(t) + Q(t) = 4 jobs in
system.

is illustrated in Figure 5. Just as in the M/M/k model, in our model there are

k servers, indexed by 1,2,...,k; jobs arrive following a Poisson process of rate

kX into a central queue, and job service times follow an exponential distribution
A

with rate p. The load of the system is denoted as p = o and the quantity

R £ kp is referred to as the offered load of the system following the convention.

To augment the M/M/k with setup times, we make the following adjust-
ments. When a server completes a job and there are no jobs waiting in the
queue, the server turns off. Now if we want to turn an off-server back on, it
requires a setup time. We assume that the setup times are deterministic with
value é This is in contrast to the regular M/M/k model, where all the servers

are on all the time. With setup times, the dynamics of the system can be
described as follows.

e When a job arrives: (i) If there are off servers, an off server initializes
setup. To avoid ambuguity, we assume that in this case the off server with
the smallest index initializes setup. In the example in Figure 5, if a job
arrives to the pictured state, server 5 initializes setup. (ii) If all the servers
are either on or in setup, their states do not change.

e When a job is completed on a server: (i) If the queue is empty, the
server turns off. (ii) If the queue is nonempty, the server puts the head-
of-queue job into service. Then if the number of jobs left in the queue is
smaller than the number of servers in setup, i.e., we are setting up more
servers than needed, the setup on the server with the largest remaining
setup time is canceled, returning the server back to off. In the example in
Figure 5, if server 1 completes the job currently in service, server 1 starts
serving the head-of-queue job, the setup on server 4 is canceled, and server



4 returns to off.

Now we explain the notation we use to describe the state of the system at
time ¢. An example is again given in Figure 5. Let Z(t) be the number of on
servers (busy servers). Then Z(t) is also the number of jobs in service. Let
Q(t) be the number of jobs in queue (not including the jobs in service), and
N(t) = Z(t) + Q(t) be the total number of jobs in system. We describe the
remaining setup times of servers via a size k vector W (t), where, if server i is
in setup, the entry W;(t) is the remaining amount of time that the i-th server
needs to finish setting up before turning ON. If server i is not in setup, we set
W;(t) in the following way for convenience: if server i is on, we set W;(t) = 0;
if it is off, we set W;(t) = co. Then it is clear that the process

{s®)2zm.00.we):ter, )

is a Markov process. Let s = (z,q,w) represent a realization of the state.
We drop the time index and simply write S, Z,Q, N and W to represent the
corresponding quantities in steady state. We note that by Little’s law, the
mean number of busy servers in steady state is equal to the offered load, i.e.,
E[Z] = R = kp.

We now define some notation which will prove useful in our later analyses.
For convenience’s sake, we use the notation A(t1,t2) to denote the number of
arrivals which arrival during the interval [ti,t5). Likewise, we let D;(tq,t2)
denote the number of (potential) departures from the first j servers. Taking IT’s
to be unit rate Poisson processes, we can define this as

A(ty,t2) =TT4 (kAte) — T4 (kAty)
and
j tl tl
Dj(t1,t2) = Z |:Hi <M(t2 — 1)+ u/ 1{Z(z)zi}d9€> =1L (M/ 1{Z(m)2¢}d$)],
i=1 0 0

where the true number of departures from the system is

k t
Dep(t) = ZHi (u/ l{Z(z)zi}dx>'
i=1 0

3 Related Work

In this section, I discuss some related works which also analyze the effect of
setup time in queueing systems. Although we have found no theoretical work
analyzing multiserver systems with deterministic setup times, there is a rich
history of work around the analysis of queueing systems with setup.

10



Single server The case of setup time in a single server has been under-
stood since the 1960’s. Welch, in [22], considers a slight generalization of the
M/G/1/setup queue where, if a customer arrives while the server is idle, then
they have a different service distribution than if they arrive while the server is
busy. Welch characterizes the steady-state and transient distributions of the
queue length and delay. This important result has been extended in a variety
of different directions, both by adjusting the service discipline and by adjusting
the arrival process [2, 12, 3].

M/M/k and M/G/k with staggered setup The easiest case of multi-
server systems with setup times involves the staggered setup model, where at
most one server can be in setup at a time, greatly simplifying the analysis. In
[1], the authors obtain an expression for the steady-state distribution of queue
length for the system when setup times are Exponential, using the method of
difference equations. In [7], the authors simplify the solution of the M/M/k
with exponential setup times considerably, and prove a decomposition result for
mean delay. In [5], the decomposition result is generalized to a hyperexponen-
tial job size distribution, and shown to hold approximately for a general job size
distribution.

M/M/k/Setup-Exponential, Approximations Most of the results that
deal with an M /M /k/Setup system assume Exponential service times and are
approximate. In particular, we highlight the work in [18] and [7]. Gandhi et al.
[7] seek useful intuitive approximations to the M/M/k/Setup-Exponential sys-
tem. Their approximations stem from an exact analysis of the M /M /co/Setup-
Exponential system, which they then modify in various ways to capture the
finite server case. The approximations in [7] work well, except when both load
and setup times are moderately high (p > 0.5 and £ > 10).

Pender and Phung-Duc [18] consider a generalization of the M/M /k/Setup-
Exponential model which includes non-stationary arrival rate and customer
abandonment. Within this model, they derive a mean field approximation for
the system dynamics, which they prove converges as the number of servers, k,
approaches infinity.

Unlike our work, neither Pender and Phung-Duc [18] nor Gandhi et al. [7]
provide explicit bounds on the delay. The approximations themselves are also
not stated as an explicit function of the system parameters. Finally, neither
considers Deterministic setup times.

M/M/k/Setup-Exponential, Exact Analysis There are only a few results
that deal with the exact analysis of the M/M/k with Exponential setup times.
The most well-known are [11] and [19]. Gandhi et al. [11] give the first exact
analysis of the M/M /k/Setup-Exponential system. To do this, they develop
the Recursive Renewal Reward (RRR) technique for solving the corresponding
Markov chain, algorithmically. Gandhi et al. [11] use RRR to obtain the Laplace
transform of delay for any particular value of k, but do not provide a formula

11



as a function of k. Phung-Duc [19] rederives the exact solutions from [11] using
generating functions and matrix-analytic methods.

While [11] and [19] are important in that they provide the first exact analysis,
their algorithms actually take O(k?) time to compute. They also do not provide
good intuition for the structure of the solution, i.e., how the different system
parameters (mean setup time, mean service time, arrival rate, number of servers)
affect the delay behavior of the system.

Distributed setting Setup times have also been looked at in distributed sys-
tems where a dispatcher routes each incoming job to one of several queues.
Mukherjee et al. [17] describe a token-based load balancing and scaling scheme
called TABS that takes into account of setup times on the individual queues.
They prove that the performance of TABS (as k — o0) is asymptotically op-
timal. While [17] assumes that the queues have finite buffers, Mukherjee and
Stolyar [16] generalize their results to infinite buffers. The nature of the ques-
tions being asked and answered in [17] and [16] are very different from the
central queue-based work we discuss.

M/G/2/Setup-Deterministic, with dispatching In the control litera-
ture, deterministic setup times have been incorporated into models in order
to enhance realism. Hyytid et al. [13] consider a dispatching version of the
M/G/2/Setup-Deterministic model, and attempt to build near-optimal policies
for the joint control of setup initiation and the dispatching of jobs. We hope that
our analysis here could open the door to more fine-grained stochastic analysis
of such control policies.

M/M/k/Setup-Deterministic, simulation only The only work we have
found which discusses the M/M /k/Setup-Deterministic model explicitly is a
simulation-based thesis by Kara [14]. Their simulation results corroborate the
argument we make in Section 1. In particular, they observe that the mean
delay in the M/M/k/Setup-Deterministic is consistently larger than that of
the M/M/k/Setup-Exponential, and, as the mean setup time i increases, the
relative increase in mean delay between the M/M /k/Setup-Deterministic and
the M/M/k/Setup-Exponential also increases.

Algorithms for reducing the effect of setup times on delay and energy
usage Setup times are both a problem from a delay perspective and also from
an energy perspective (servers utilize peak power while in setup [10]). One can of
course avoid setup times altogether by always leaving servers on, but this results
in wasted energy as well, since a server which is on, but idle, utilizes 60-70%
of peak energy [10]. To manage power efficiently, several algorithms have been
developed to reduce the costly effects of setup times. One idea is Delayed Off,
whereby a one waits some time before turning off a server, so as to avoid a future
setup time [6, 7, 10, 18]. Another idea is routing jobs to the Most Recently Busy
server (MRB), so as to minimize the size of the pool of servers that are turning

12



on and off [6]. Similar to MRB is the idea of creating a rank ordering of all
servers and always sending each job to the lowest-numbered server in the rank
[10]. The goal of all such algorithms is to minimize the Energy-Response-time-
Product (ERP) [6], maximize the Normalized-Performance-Per-Watt (NPPW)
[4], or minimize energy given a fixed tail cutoff for response time [10]. Other
ideas for minimizing delay and energy involve utilizing sleep states in servers,
which require more power than being off, but have a lower setup time [8, 9].

4 Key Techniques

In this section, I discuss the general method used to derive our main results,
the upper and lower bounds on E[T]. The method I have developed can be
broken into three steps:

1. First, we find a useful renewal cycle and applies the Renewal Reward
Theorem, which states that, for example,

E {fOX Q(t)dt] E {fOX Q(t)dt}
- EX] g [fOX 1dt]

E[Q(c0)]

where by convention this renewal cycle begins at time 0 and ends at time
X. Note that from here, to prove a bound on E[Q(c0)], it suffices to
provide the numerator and denominator separately, which can both be
framed as time integrals up to a stopping time.

2. Second, we decompose the renewal period [0, X) into further sequences of
stopping times, leaving intervals of the form [7,v) for stopping times 7
and ~.

3. Third, we use coupling to take the problem of bounding E [f: Q(t)dt] and
reduce that bounding problem to a more basic probabilistic problem.

With the steps stated, I describe each step in turn.

4.1 The First Step: Applying the Renewal Reward Theo-
rem

The first step in this method, applying the Renewal Reward Theorem, is not
in-and-of-itself very difficult, but should nevertheless not be taken lightly. The
choice of renewal cycle here has a very large impact on the difficulty of the
next two steps. As far as I can see, our method works best for renewal cycles
whose lengths are both not too long and not too short. Because the stopping
time decomposition in the next step is essentially conditioning on what hap-
pens during the cycle, renewal cycles which are too long require very complex
reasoning about all the different possible trajectories of the system over a long
timescale. For example, it would be hard to reason about the behavior of the

13
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Figure 6: Idealized depiction of an M/M/k/Setup-Deterministic renewal cycle.

system in between moments where the system empties, i.e. the number of jobs
N(t) becomes 0. On the other hand, if the renewal cycle is too short, then
it will be hard to deduce anything about what has happened in between re-
newal points. For example, if we set our renewal points to be the moments
where the queue is empty and the number of busy servers Z(t) = R, then we
could both 1) have a job arrival and a job departure in rapid succession, and
2) have a departure next, turning off the R-th server and thus requiring at
least a full é before the renewal cycle is over. In my work, we set the renewal
point X = min{t >0: Z(t") = R+ 1,Z(t) = R} to be the first moment that
(R + 1)-th server turns off. This turns out to be a happy medium, where the
system renews consistently and the dynamic behavior between renewals varies
only slightly. We show an idealized depiction of one of our renewal cycles in
Figure 6.

4.2 The Second Step: Stopping Time Decomposition

The second step in this method is stopping time decomposition, which one
might also call conditioning across time. In this step, we decompose the inter-
val [0, X) into a sequence of intervals Z;, with the goal of deriving an accurate
understanding of the behavior of the system within each interval. This decom-
position happens along certain critical moments during a renewal cycle, which
we usually define by entrance into or exit out of a particular region of state
space. For example, since the end of a cycle X is marked by the shutoff of the
(R + 1)-th server, and the (R + 1)-th server is off at time 0, a natural critical
moment is the moment the (R + 1)-th server turns on. This point, which we
call T4, represents a critical phase transition in the dynamics of the system:
before time T4, the departure rate of the system is at most the arrival rate, but
after time T4, the departure rate is strictly larger than the arrival rate. In other
words, before Ty, jobs accumulate, and after T4, they drain. This observation
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turns out to be incredibly useful in deriving these bounds.

First criterion. Before discussing the third step, I will describe in more de-
tail how one should choose these “critical moments” by which we decompose the
renewal cycle. In my work, there are two broad criteria by which I select stop-
ping times. First, we want stopping times that imply something about future
dynamics, i.e. the behavior of Z(t), the number of busy servers. For example,
in both bounds we define

i 2min{t>0: N(t)=R—j}.

Since we begin with Z(t) = R busy servers, then at time 7; we know that the
number of busy servers Z(t) = N(t) = R — j, i.e., we know the exact state at
time 7;. Thus, the definition of 7; immediately gives us two facts:

1. For the next 1 after time 7;, the number of busy servers Z(t) < R — j.
2. Until time 7;41, the number of busy servers Z(t) > R — j.

These two statements turn out to be key in establishing our bounds.

Second criterion. The second criterion is that the number of these stopping
times which happen before a renewal point X should be bounded in some way.
In our case, we define stopping times based on the moments when the system
enters a “bad” region of state space, e.g., when the number of jobs N(t) grows
larger than some fixed boundary R + M. By tuning the size of this boundary
appropriately, we can both 1) bound the number of visits to this “bad” region,
and 2) bound the time integral while within this bad region. For example, in our
proof of the upper bound on E [Ty], we call the interval from [7;, 741 AT4) the
j-th epoch, and we further break each epoch into a set of up-crossings followed
by down-crossings, and show that the number of up-crossings is stochastically
dominated by a certain Geometric random variable. Optimally, we can argue
jointly about the dynamics after entering a region of state space and the integral
while spent in that region.

4.3 The Third Step: Bounding

In the second step, we decomposed time into small intervals for which one has a
tight bound on the dynamics; in the third and final step, we explicitly translate
those dynamics-bounds into integral-bounds using, in our case, a combination of
coupling arguments and martingale theory. If the previous steps have gone well,
then all the reduced problems at this point are very basic probability problems.

First example: hitting probability. For example, in both my upper bound
and lower bound of E [Ty], I consider the following problem:
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Problem 4.1. Suppose that epoch j, which begins at time 7;, ends when either
the next epoch starts (at 7j11) or the (R+1)-th server turns on (at the stopping
time we call T4 ). What is the probability that epoch j lasts longer than a setup
time?

After a bit of work, we can reduce this problem to:

Problem 4.2. Suppose we have a biased discrete random walk V(z) which
begins at V(0) = 1 and in each step V(x) moves upward with probability p and
downward with probability g < p. What is the probability that we reach V(z) =0
in T steps?

which can be solved in a variety of ways (combinatorics, the Optional Stopping
Theorem, etc.).

4.3.1 Second example: escape probability

As another example, when proving that a number of up-crossings is stochasti-
cally dominated by a Geometric random variable, we encounter the following
problem:

Problem 4.3. Given a constant c, suppose that at some time u, the number of
EA

jobs N(u) = R+co, where 0 = /%2, and the number of busy servers Z(t) < R.
Give an upper bound on the probability that N(t) becomes < R within the next
L time.

«

From a coupling argument, this reduces to

Problem 4.4. Given two independent Poisson processes Ya(t) and Yp(t) of
rate kX, give an upper bound on Pr (SUPte[O,L] Ya(t) —Yp(t) > ca).

which can also be solved in a number of ways (combinatorics, the Optional Stop-
ping Theorem, the Berry-Esseen bound, etc). By solving these basic problems,
we obtain small facts which, when assembled in the right way, give the desired
bound.

5 Lower Bound

Section 5 focuses on the following lower bound for E [Tg] in an M/M/k/Setup-
deterministic system.

I first state the theorem, then describe the approach I have taken to prove
it, then give an update on my progress towards proving it.

Theorem 2 (Explicit Lower Bound). Consider an M/M/k/Setup-Deterministic

system with load p = % and setup time é If the ratio between the setup time
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Figure 7: A depiction of a few epochs of the first phase.

and the service time satisfies that % > 1000, the offered load R = kp > 128,

and 1?—3 > log2(kp), then the expected delay in steady state is lower bounded as

e ([0 E ra)])
Elel= g (24+2)+2+n(Cotl2) + Crog (Cped2)

where C1,Cy, and Cs are constants independent of system parameters k, A, u,
A

and o, and g(x) = [952;1 + ﬁ] meEmE

5.1 Approach

To prove this theorem, I follow the procedure outlined in Section 4. Let X £
min{t >0: Z(t~) = R+ 1, Z(t) = R} refer to the next renewal point. Applying
the Renewal Reward Theorem, we obtain

E [ s Q(t)dt}

E[Q()] = — 7

Our two main lemmas will be a lower bound on the numerator and an upper
bound on the denominator. We discuss each bound separately.

5.1.1 Lower bound on E [ i Q(t)dt]

To prove the lower bound on the numerator, we first break the initial portion of
a renewal cycle into epochs; see Figure 7 for a visual reference. Recall that we
define 7; £ min {t > 0: N(t) = R — j} as the first time the number of jobs falls
to R — j, define T4 as the first time the (R + 1)-th server turns on, and call the
period [7j,Tj41 A Ta) the j-th epoch. Call an epoch long if its length is longer
than a setup time, and let L be the index of the first long epoch. Note that
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1. An epoch j occurs during this renewal cycle if and only if 7; < Ty,

2. The end of the first phase T4 can not occur until a long epoch has hap-
pened (since no servers can set up during a short epoch), and furthermore
must occur after 77, + é

3. The moment where epoch L is identified, 77, + é, is a stopping time.

It follows that

X TL+E X
E l /0 Qt)dt /O Qt)dt /T . Q(t)dt] o ©

We analyze each of the terms in the right hand side of (2) separately.

=K +E

Bound on the first term. To bound the first term in (2), we use the obser-
vation that the departure rate is fixed at u(R — j) at the beginning of epoch j
together with the Optional Stopping Theorem to show that

TLJré U
E /0 Q(t)dt] > LR,

To bound E[L], we directly bound the probability that epoch j lasts longer
than a setup time; we reduce this to a problem about biased random walks, as
discussed in Problem 4.2. In the end, we get a bound which says

1
E[L] > VE, 3)
which completes our bound of the first term.

Bound on the second term. To bound the second term in (2), we couple
the original system to an M/M/1 with arrival rate kX and departure rate kpu.
In particular, define the coupled number of jobs in queue as

+
Q(t):A(TL+$,t)ka(TL+é,t)+ |:N(TL+(]);)]€:| .

Let BP £ min {t > T —l—é : Q < 0} be the next time the coupled queue is
empty. Since Q(t) < Q(t) for all t € [, + 1 BP], it follows that

BP < X
and, thus that
X BP
| ema= [ qua
(TLJr%) (TL+é)
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where one should note that the expected value of the right hand side is simply
the expected time integral of an M/M /1 with arrival rate kA and departure rate
ku over a busy period started by [N (7 + ) — k]*, which is known classically.
1

ﬂ} 7@(?7”. Applying
Jensen’s inequality, we find

5 [ [Fewa| =& [ awa [ Q@dt]
o([v(2) )]
> gE[LH—g ({E [N (TL—‘r;) —R} _k(l_p)r> .

To bound E [N (TL + é) — R], we again make a martingale argument, which
shows that

E{N(TL—F;)—R} Z(g—l)E[L].

Using the bound on E[L] from (3), we obtain that

, +
/OXQ(t)dt]1<1> @*g l(gl)\/ﬁk(lp)l 7

"2 \a

. . . A _
For convenience, we write this value as g(z) £ |21 +

=E +E

Y

ER(L)+E
o

E

as desired.

5.1.2 Upper bound on E [X]

To upper bound the expected length of a renewal cycle E [X], we analyze the two
phases of the system separately, i.e. we bound E [T4] and E[Tg] £ E[X — T}4]
separately.

Bound on E[T4]. To bound E[T4], we make an up-crossing argument; for a
visual representation, see Figure 8. For our up-crossings, we define a sequence
of separated visits to the region N(t) > R+ M, where

i Zmin{t>0:N(t) >R+ M}
and

1
’I“i+1émin{t>7‘i+2N(t)ZR+M}.
«

Let n, be the random number of these separated visits which occur before time
Ts. From Wald’s equation, we see that

n,—1
Ta—rn, + E Tit1 — T
i=0

E[T4] = E
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Figure 8: A depiction of the first few “separated visits” to the region N(t) >
R+ M.
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=0

= ZPr (ny > ) E[riza ATa — ri|n, > 1.
i=0

We then show that, if M = / %, then the number of visits n,. is stochastically

dominated by a Geometric random variable, and the time between visits is
bounded by

1 1
E[’I‘H_l ATy —Ti|n7- > Z] <2 ( + >
« H

This, in turn, tells us that
E[Ta] = ZPr (nr > ) E[riza ATa — ri|n, > i
i=0

<2(3+2)En]

a  p

as desired.

Bound on E [Tg]. To bound E [Tg] = E [X — T4, we again make an M/M/1
coupling argument, except that here we couple the original system to something
we call the shutoff system, where the dynamics of the two systems are the same,
except that shutoff system does not turn on servers. Specifically, we let the
system turn on and off servers for % after time T4, and then, at time T4 + é,
we migrate our jobs and busy servers to the shutoff system and allow it to run
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until Nsgyr(t) = R. After analyzing the shutoff system as a sequence of M/M/1
queues, we obtain that

E[Q(Ta)] C1

E[X —Ta] < = + o log (E[Q(Ta)))

1

o  ku(l—p)
To finish our proof, we bound E[Q (T4)]; to do so, it suffices to bound the
conditional expectation after an up-crossing. We do so using martingales and
the notion of epochs and up-crossings, an idea explained more thoroughly in
Section 6.

5.2 Status

This part of the project is essentially 100% complete, and a paper on the sub-
ject matter has been published in SIGMETRICS 2023. As I've gained insight
into the problem more, there are a few pieces I would like to rewrite for clar-
ity /cohesiveness and a few places I think the analysis can easily be tightened,
but, aside from that, I am done with it.

6 Upper Bound

In Section 6, I discuss the ideas that go into proving the upper bound, and give
an update on this part of the project’s status. First, the theorem statement:

Theorem 3. Consider an M/M/k/Setup-Deterministic system with load p = %
and setup time é If the ratio between the setup time and the service time
satisfies that % > 1000, the offered load R = kp > 128, and % > log?(kp),

then the expected delay in steady state is upper bounded as

2
Bs/E4B12VR)

[ kA pVR ) 1 ( 1_p
1 (Bl a + By «a ) «a + pk(1—p) + al—p kX
B\

ETH < —
[Q]_k/\

VR

+

1
a ' ku(l—p)

where all the B;’s and A1 are constants independent of system parameters k, A, u,
and «.

6.1 Approach
Following the method outlined in Section 4, we reduce the problem of upper
bounding E [Tg] to upper bounding E [ fOX [N(t) — R]dt} and lower bounding

E [X]; note the change in integrand made here, compared to the usualy Q(¢).
We address the two bounds separately, in some places recalling ideas from the
lower bound of Section 5.

21



N(t) ]

R+ M=
R =
R-j

Figure 9: A depiction of the first few up-crossings and down-crossings in epoch
j-

6.1.1 Upper bound on E [fOX [N(t) — R]dt}
We again split our analysis into two phases. Recall that
TaZmin{t>0:Z(t)=R+1},

and call the interval from [0,74) the first phase, and [T'4, X) the second phase,
as in Figure 6.

Bound on E [ fOTA [N(t) — R]dt} . To bound this integral, we again split the

first phase up into epochs, but now we further decompose the epochs into up-
crossings and down-crossings; see Figure 9 for details. Here, the zeroth down-
crossing is at time 7, the first up-crossing is at time

u:(Lj) Smin{t>7;: N(t) > R+ M},
and, in general, the i-th down-crossing occurs at time
dl(j) £ min{t > ugj) (N() < R} .
Likewise, the (i + 1)-th up-crossing occurs at

ugi)l émin{tzdgj):N(t) ZR+M}-

Furthermore, we call the interval [ugj ),dz(- 7)) the i-th fall in epoch j and the

interval [dz(.j), uzﬂ) the (i + 1)-th rise in epoch j, let n. be the number of epochs
before time T4, and also let ngj ) be the number of up-crossings which occur
during epoch j.

We separate our analysis of rises and falls. During a rise, by definition, we
have the bound N(t) — R < M. It follows that the time integral over the i-th
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rise is always < M [uij A Ta— dl(-j )]. Likewise, during epoch j, we have a lower
bound on the number of departure rate of jobs (u(R — j)), which, via a simple
coupling + martingales argument, gives way to a simple bound on the time

integral over a fall
TA/\d(»j> ]_ ]. 2
' _ @ >4lez (2 ;
E V [N(t) — Rdt n) > z}+2 ( ) 1,
u @

)

n) > Z] < 2ME [T4 A d? — ul

where here we have set M = %’\ Applying Wald’s equation and performing
some algebra, we obtain

E{A IN(t) — R)dt

1 1 2 [e’e}
< — | — > 1) 7.
< 2ME [T4] + 3 (a) MJE:OPr (ne >3)J

We bound this final summation by proving that, for j > v2V/R,

V2

VR’

i.e. by lower bounding the probability that the first phase ends before the next
epoch begins.

Pr(ne = jlne > j) >

Bound on E [ fT)i [N(t) — R]dt} . To bound this integral, we again make use
of the separated visits idea from Section 5, except that now we are interested in
down-crossings, letting our first visit occur at time

vy 2min{t > T : N(t) < R+ M}

and letting successive separated visits occur at
1
Vit1 émin{t >v;+—:N(t) §R+M2};
@

see Figure 10 for more details. For convenience, let n, be the number of visits
which occur before time X.

Using the same idea of allowing the system to turn on servers for a é period,
then converting our system into a SHUTOFF system (a system where servers
can only turn off; see Section 5 for more details), we can obtain bounds on

the integral until the first visit E [ f;ﬂ, the integral between successive visits

E [f;i“}, and the probability Pr(n, >i). We omit the exact statement of

these bounds, due to their complexity. Combining these bounds using Wald’s
equation, we find that

vaww—mw

pk(1 — p) al—p

b
Ta

2
Bg M+B4MVR)
[k vR\ 1 ( Vo« o 1
<<BG a+B7MO¢>O¢+ +

as desired.
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Figure 10: A depiction of the first few visits to the region {N(t) < R + Mas}.

6.1.2 Lower bound on E [X]

To prove a lower bound on the cycle length, we again make use of the “long”
epoch idea, where an epoch is long if it lasts longer than é time, and L is the
index of the first long epoch. Since at least one epoch must be long, we have
E [’TL + ﬂ > é Moreover, by coupling the system to an M/M/1 with arrival
rate kA and departure rate ku at time 7z + 5 we obtain that

O )

E[N (1L + 1) - R]
kp(1 — p)

Just as in Section 5, applying a stopped martingale analysis, we find that

vV
QIr

+

1 1
E [N (TL + ) - R} >Pp) > -EVR2 AL VER,
« « 2« «

which where we once again bound E [L] by lower bounding the probability that
an epoch lasts é time.

6.2 Status

I would estimate this project is around 90% done: a very rough draft of the
technical results has been written, and my goal is to prepare and submit a
manuscript to either Performance or Operations Research (OR) within the next
few months.

7 Future Work

In this section, we describe a few possible next steps for this project.
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7.1 Analyzing the Gap (in mean delay between the Expo-
nential and Deterministic models)

Perhaps the clearest next step to take is to attempt to prove that there’s a
large gap between the Exponential setup model and the Deterministic setup
model. There are two reasons why I find this direction compelling.

The first reason is that showing that this gap is large would provide a strong
theoretical justification that the setup distribution can not be ignored when
modeling multiserver systems with setup. In fact, looking at our experimental
results (Figure 2), there is a natural conjecture:

Conjecture 7.1. As the number of servers k and the setup time é both scale
to oo, the limit

[ +( Exp)
E (7§ }

[~(Det) -
E 18]
Although Conjecture 7.1 seems to be the case, at the moment, there are no

closed form bounds for E [Té?EXp) . The state-of-the-art when it comes to the

analysis of the M/M /k/Setup-Exponential are computational methods [11, 19)

and limit theorems [18]; to date, no one has produced a provably correct formula
1

a

bounding E [Tglxx))] which captures its scaling behavior with the setup time

Beyond cementing the separation between Deterministic and Exponential
setup systems, analyzing the Exponential system would also present unique
challenges to the methods I have developed to analyze the Deterministic system.
In the Deterministic system, we have almost sure lower bounds on when a
server will next turn on, and questions about the system dynamics can easily be
phrased in terms of straightforward stopping times. In the Exponential system,
the moment-to-moment dynamics of the system end up affecting the time until
setup occurs; how should we modify our method to account for this? At the
moment, the modification we should make is unclear, but, once understood,
could pave the way to making this method much more broadly useful.

In particular, I am excited to find out how to blend existing steady-state
analysis techniques with my method which focuses on integration. For example,
state-space collapse results show that a system with a high-dimensional state
space has a steady state distribution with much fewer dimensions, e.g. a dis-
patching system using a Join-the-Shortest-Queue assignment discipline usually
has very balanced queues. Is there a nice state-space collapse result for the
Exponential setup system which we can use to help us bound the expected time
integrals that my method produces? Answering questions like these would clar-
ify the strengths and potential synergies between the method I introduced here
and others.
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7.2 Analyzing Other Policies

Given that we have demonstrated that setup times can have a large negative
effect on queueing, another compelling direction is to show that there exists a
policy which can mitigate that large negative effect, and, if possible, charac-
terizing the delicate balance that exists between the properties of performance,
robustness, and efficiency. There are a number of possible policies to analyze.
One example is the Delayed-Off policy, a policy where the system behaves in
the same way as the M/M /k/Setup, except that idle servers are now turned
off at some rate (8 instead of instantly turning off. This parameter 8 provides
a tunable interpolation between the usual M /M /k/Setup policy and the policy
which keeps all servers on all the time (when 8 — oo and 8 — 0, respectively).
It would be interesting to deduce a systematic way of setting 8 to ensure a
system achieves its desired quality of service.
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8 Timeline

In this section, I lay out a timeline for completing my thesis work.

May-July 2023:

e Prepare a submission for Performance or OR on the Upper Bound (Sec-
tion 6).

e Write thesis chapter on the Lower Bound (Section 5).

e Begin work on Analyzing the Gap (Section 7.1).
August-October 2023:

e Begin work on Analyzing Other Policies (Section 7.2).

e Write thesis chapter on Impact (Section 1.7).

e Prepare a submission for the SIGMETRICS Fall deadline on Analyzing
the Gap (SectionT7.1).

November 2023-January 2024:
e Write thesis chapter on the Upper Bound (Section 6).
e Write thesis chapter on Analyzing the Gap (Section 7.1.

e Prepare a submission for the SIGMETRICS Winter deadline on Analyzing
Other Policies (Section 7.2).

February-April 2024
e Write thesis chapter on Analyzing Other Policies (Section 7.2).

e Finish writing thesis and complete outstanding projects.
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