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Abstract
In many systems, servers do not turn on instantly; instead, a setup time must

pass before a server can begin work. These “setup times” can wreak havoc on a
system’s queueing; this is especially true in modern systems, where servers are reg-
ularly turned on and off as a way to reduce operating costs (energy, labor, CO2,
etc.). To design modern systems which are both efficient and performant, we need
to understand how setup times affect queues.

Unfortunately, despite successes in understanding setup in the single server set-
ting, setup in the multiserver setting remains poorly understood. To circumvent the
main difficulty in analyzing multiserver setup, all existing results assume that setup
times are memoryless, i.e. distributed Exponentially. However, in most practical set-
tings, setup times are close to Deterministic, and the widely used Exponential-setup
assumption leads to unrealistic model behavior and a dramatic underestimation of
the true harm caused by setup times.

This thesis represents a comprehensive characterization of the average wait-
ing time in a multiserver system with Deterministic setup times, the M/M/k/Setup-
Deterministic. In particular, we derive multiplicatively-tight lower and upper bounds
on the average waiting time, demonstrating that setup times, along with their dis-
tributions, can not be ignored; setup times can cause profound increases in wait-
ing time, especially when the distribution of setup time has low variability. Our
bounds are the first closed-form bounds on waiting time in any many-server sys-
tem with setup times, including the extensively-studied Exponential setup system.
Furthermore, we use our bounds to derive a highly-accurate approximation, which
we evaluate in a variety of settings. These results are made possible via our new
method for bounding the expectation of a random time integral, called the Method
of Intervening Stopping Times or MIST.
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Chapter 1

Introduction

1.1 Setting

1.1.1 What are setup times?
In many systems, servers do not turn on instantly; instead, a setup time must pass before a server
can begin work. For example, for applications hosted in the cloud, application replicas must take
time to boot up before they can begin fulfilling requests; for overwhelmed hospitals, traveling
nurses must wait to have their credentials confirmed before they can begin helping patients; for
many businesses, workers must go through a long process of recruitment and onboarding before
they can begin serving customers. By thinking about this “initial delay before service” as an
abstract setup time, we can learn how setup time affects all of these systems simultaneously.

1.1.2 Why do setup times matter?
Setup times can have a significant impact on a system’s queueing behavior, especially in modern
systems. For systems which keep their servers on all the time, clearly setup times do not affect
their performance. However, in many modern systems, servers are regularly turned on and off.
Because servers don’t turn on instantly, jobs in a system with setup times end up delayed com-
pared to their no-setup counterparts. If setup times are long enough, this additional delay can be
significant.

Nevertheless, many systems still regularly turn their servers off and on. Why? Because by
doing so, one can save a considerable amount on operating costs, e.g. energy, money, CO2, etc.
That said, this cost-saving measure is only a viable option if the additional delay caused by setup
times is not too large. Therefore, if we want to design systems which are simultaneously efficient
and performant, we need a good understanding of how setup times affect queueing performance.

1.1.3 What makes the setup effect difficult to understand?
Setup times in the M/M/1. Note, though, that the additional delay caused by setup does not
always manifest in an obvious way. For example, consider a simple single server queue with
setup times, the M/M/1/Setup. The job which is the first to arrive to an empty system triggers

1



April 6, 2024
DRAFT

the off server’s setup, and must wait a full setup time before it is served. Likewise, every job that
arrives afterward must wait in line behind the setup-triggering job, and so also partially observes
the server setting up. However, even after it turns on, the fact that the server was off for a while
has a lasting impression on the length of the queue; the queue is longer than it would otherwise
be. Thus, setup can even affect the delay of jobs that never actually observe a server in setup.

The effect of setup on queueing behavior is made even more complex when the setup time is
allowed to be a random variable, sampled independently every time setup is initiated, and when
the length of each job follows an arbitrary distribution. This more complex model is called the
M/G/1/Setup. Further, despite its apparent complexity, the full waiting time distribution of the
M/G/1/Setup was completely characterized in 1964 by [30].

1.1.4 Why setup times are even harder in the multiserver setting?

Unfortunately, the effect of setup on delay is even harder to understand when multiple servers can
set up at the same time. Recall that, in the single server setting, the server’s setup process always
completes once initiated, and there is always at least one job to work on once the server turns on.
This implies that, although setup has a complex effect on job delay, the server’s behavior itself is
quite simple: it first initiates setup; then, once setup completes, the server begins working; then,
after finishing all the work in the system, the server turns off. On the other hand, when multiple
servers can simultaneously be in setup, their server states begin to interact.

In particular, via the speed of their processing, the busy servers indirectly control the setup
behavior of the not-busy servers. For example, if server A is on while server B is setting up, then
server A might finish all the work in the queue before server B even has a chance to turn on. As
such, in the multiserver setting, it can sometimes make sense to cancel a server’s setup process;
a situation which would never occur in the single server setting. Of course, the opposite can
also happen: if the busy servers are working much more slowly than expected, then the queue
might grow large enough that we begin setting up a server that would otherwise be left off. This
interaction between departure behavior and setup behavior is exactly what makes the setup effect
so much harder to understand in the multiserver setting.

1.2 Our problem: Understanding the M/M/k/Setup

In this work, we study the effect of setup times on the average waiting time in the M/M/k/Setup,
a simple variation on the classic M/M/k queue which accurately captures the complexity which
arises from simultaneous setup.

1.2.1 Brief Model Description

Job Dynamics. Outside of its setup dynamics, the M/M/k/Setup behaves essentially identically
to the usual M/M/k. Jobs arrive in a Poisson process to a central queue, where they wait in First-
Come-First-Served order until they are served by one of k servers. The job at the head of the
queue enters service whenever either 1) a server finishes setting up and turns on or 2) a server

2
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Figure 1.1: Simulation results for the M/M/k/Setup-Deterministic, M/M/k/Setup-Exponential,
M/M/k (no setup), varying the number of servers k and keeping fixed the service rate µ = 1, the
setup time β = 1000, and the load ρ = 0.5. Note the high separation between all three models.

finishes its current job. Once in service, the job stays in service for an i.i.d. Exponential amount
of time, after which the job departs.

Setup Dynamics. To complete our description of the M/M/k/Setup, it suffices to describe how
the system controls the setup process. Servers can be in one of three states: off, on, or in setup.
Servers turn off whenever they finish their current job and there are no jobs waiting in the queue.
Servers turn on when they have remained in setup for a full setup time; in general, this setup
time is some i.i.d. random variable which is sampled at the moment that setup is first initiated.
Servers initiate and cancel setup based on job arrivals and departures, respectively. In particular,
if a job arrives to the system and sees off servers, it initiates setup at one of these off servers
(we assume every server is identical). Likewise, if the number of in setup servers ever exceeds
the number of jobs waiting in the queue, then the system turns off the servers which have been
in setup for the least amount of time. Using the M/M/k/Setup, we can now study the complex
interactions which arise from simultaneous setup.

1.2.2 Understanding the M/M/k/Setup: State of the Art
Everyone uses the Exponential model. Despite continued academic interest, our understand-
ing of the M/M/k/Setup is still extremely limited. Perhaps the most significant limitation is that
all state-of-the-art research [15, 27, 28] assumes that setup times are Exponentially distributed.
This limitation has major consequences for the utility of their work.

The Exponential model is unrealistic. We give two reasons why this limitation is so signifi-
cant. First, the “Exponential setup” assumption leads to extremely unrealistic behavior in some

3
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situations. To illustrate where the breakdown in realism happens, consider a scenario where only
a single server is setting up and compare it to a scenario where 100 servers begin setup at the
same time. In the Exponential setup model, the 100-server system receives its first server on
average 100x faster than the single-server system receives its first (and only) server. This is not
a quirk of our specific example: in the Exponential model, the longer the system’s queue is, the
more rapidly the system’s servers turn on to help drain that queue. In a sense, the Exponential
system can rapidly “react” to increases in queue length.

The Exponential model underestimates waiting. This unrealistic “reactivity” phenomenon
causes a further, more concerning, problem. We observe in Figure 1.1 that, in systems where
setup times are actually closer to Deterministic, modeling setup times as Exponential can lead
to a dramatic under-estimation of the harm caused by setup times, sometimes by many orders of
magnitude. This dramatic under-estimation is the reason why, in many practical studies of the
setup effect [20, 22], setup times are assumed to be Deterministic, e.g. servers take a fixed time
of 2 minutes to set up.

Challenges of the Deterministic model. However, although modeling setup times as Deter-
ministic might be more realistic, it also comes with a set of unique theoretical challenges. In
the Deterministic case, one must, even in simulation, track the individual remaining setup time
of every server that is currently setting up. In contrast, because the Exponential distribution is
memoryless, in the Exponential case it suffices to track only the total number of servers setting
up instead, greatly simplifying the system state. Moreover, the Exponential setup model’s sim-
plified state forms a Continuous-Time Markov Chain, a well-studied class of stochastic processes
for which a number of techniques have been developed. For the Deterministic setup model, no
such techniques exist.

1.3 Contributions

In this thesis, I develop the first results on the average waiting time in the M/M/k/Setup-Deterministic,
demonstrating that setup times, along with their distributions, can not be ignored; setup
times can cause profound increases in waiting time, especially when the distribution of
setup time has low variability.

The contributions of this thesis are both theoretical and practical. On the theoretical side, in
Chapters 5and 6, respectively, I derive the first lower and upper bounds on the average waiting
time in the M/M/k/Setup-Deterministic. Notably, these results are the first closed-form bounds
on the average waiting time in any M/M/k/Setup system, including the extensively-studied Ex-
ponential setup system. We obtain these bounds via a new technique for bounding random time
integrals called MIST, described in Chapter 4. On the practical side, in Chapter 7, I then show
how to take the components of our upper and lower bounds, and combine them to make a highly
accurate approximation; an example of the approximation alongside the bounds is shown in Fig-
ure 8.3. Finally, in Chapter 8, I explore the practical implications of our findings on provisioning
for modern “dynamically-scaled” multiserver systems.

4
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1.4 Outline
Chapter 2: Prior Work. In Chapter 2, we begin our study of setup by reviewing some related
work. We start by discussing the single server setting, then we move through the history of the
study of setup times up to the state of the art. For each result we review, we compare and contrast
their work with the main results developed in this thesis.

Chapter 3: Model. In Chapter 3, we give a more detailed description of our model. Besides
reviewing the brief description we gave in this chapter, we also describe our notation and give a
construction of our processes of interest using Poisson processes.

Chapter 4 : Key Ideas and Techniques. Next, in Chapter 4, we describe the key ideas and
techniques of this thesis. In particular, we introduce the Method of Intervening Stopping Times;
the MIST method. We describe the MIST method by first describing its general function, then
stating its associated formal definition, then proving a key lemma which allows it to be generally
applied.

Chapter 5: The Lower Bounds. In Chapter 5, we describe our first two main results (Theo-
rems 5.1 and 5.2), both lower bounds on the average queue length in the M/M/k/Setup-Deterministic.
We begin by describing in greater detail why a lower bound is needed, then proceed by stating
both bounds and proving the stronger one.

Chapter 6: The Upper Bound. In Chapter 6, we describe our final main result (Theorem 6.1),
an upper bound on the average queue length in the M/M/k/Setup-Deterministic. As we did in
Chapter 5 with the lower bounds, we first describe why we need this upper bound. Afterwards,
we give its proof.

Chapter 7: The Approximation. After proving these results, in Chapter 7, we develop an
approximation to the average waiting time in the M/M/k/Setup-Deterministic. As before, we first
describe why such an approximation is needed. Afterwards, we explicitly state the approximation
formula and describe how to derive the approximation from the bounds in Chapters 5 and 6.

Chapter 8: Evaluation. In Chapter 8, we evaluate the direct practical implications of our
work. In particular, we ask and answer three questions concerning the M/M/k/Setup:

1. How much does setup distribution matter?

2. How does our approximation’s accuracy change as we vary the system parameters?

3. What impact do our results have on the practice of provisioning?

Chapter 9: Conclusion. Finally, in Chapter 9, we summarize the main results of this thesis,
discuss some possible applications, and describe a few open problems.

5
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Chapter 2

Prior Work

In Chapter 2, we discuss the body of literature which analyzes systems with setup times.

2.1 Systems without Simultaneous Setup

2.1.1 The M/G/1/Setup

The best-understood case is the single-server case. The foremost result on this model is the
result of [30]; the author considers a generalization of the M/G/1 queue where, if a customer
arrives while the server is idle, then they have a different service distribution than if they arrive
while the server is busy. By observing that the system state at customer departure times forms
a discrete Markov chain, then analyzing that embedded chain, Welch characterizes the steady-
state and transient distributions of the queue length; via distributional Little’s Law, this gives the
same result for delay and response time. This important result has been extended in a variety of
different directions, by adjusting the service discipline or arrival process[2, 3, 18]..

2.1.2 M/M/k and M/G/k with staggered setup

The easiest case of multiserver systems with setup times involves the staggered setup model,
where at most one server can be in setup at a time, greatly simplifying the analysis. In [1], the
authors obtain an expression for the steady-state distribution of queue length for the system when
setup times are Exponential, using the method of difference equations. In [11] the authors sim-
plify the solution of the M/M/k with exponential setup times considerably, an prove a decompo-
sition result for mean delay. In [9], the decomposition result is generalized to a hyperexponential
job size distribution, and shown to hold approximately for a general job size distribution.
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2.2 The M/M/k/Setup-Exponential

2.2.1 M/M/k/Setup-Exponential, Approximations

All previous theoretical results that investigate an M/M/k/Setup system assume Exponential setup
times. We first highlight the state-of-the-art papers concerning approximating the M/M/k/Setup-
Exponential. In particular, we highlight the work in [27] and [11]. Gandhi et al. [11] seek useful
intuitive approximations to the M/M/k/Setup-Exponential system. Their approximations stem
from an exact analysis of the M/M/∞/Setup-Exponential system, which they then modify in
various ways to capture the finite server case. The approximations in [11] work well, except
when both load and setup times are moderately high (ρ > 0.5 and µ

α
> 10).

Pender and Phung-Duc [27] consider a generalization of the M/M/k/Setup-Exponential model
which includes non-stationary arrival rate and customer abandonment. Within this model, they
derive a mean field approximation for the system dynamics, which they prove converges as the
number of servers, k, approaches infinity.

Unlike our work, neither Pender and Phung-Duc [27] nor Gandhi et al. [11] provide explicit
bounds on the delay. The approximations themselves are also not stated as an explicit function
of the system parameters. Finally, neither considers Deterministic setup times.

2.2.2 M/M/k/Setup-Exponential, Exact Analysis

There are only a few results that deal with the exact analysis of the M/M/k with Exponential
setup times. The most well-known are [15] and [28].

In a followup to the approximation work done in [11], in [15] the authors give the first exact
analysis of the M/M/k/Setup-Exponential system. To do this, they develop the Recursive Re-
newal Reward (RRR) technique, which allows them to analyze 2-dimensional Markov chains of
a certain structure. They apply this technique to the M/M/k/Setup-Exponential system, and thus
provide a method for computing the time-average value of any function of the system state; ap-
plying this method to the correct function gives the mean and Laplace transform for the number
of jobs in queue.

In [28], the author rederives the exact solutions for the queue length obtained in [15] using
two different methods: an analysis using generating functions, and an analysis applying the
matrix analytic method after casting the system as a quasi-birth-death process. Although these
techniques appear different, the author highlights some core correspondences between them, and
also between these methods and the RRR technique of [15].

Despite the fact that [15] and [28] represented the first breakthrough in our understanding of
the setup effect in 50 years, their results are limited in two significant ways. First, instead of
a closed-form formula for the average waiting time, the authors only derived an algorithm for
computing the average waiting time. This algorithm is useful in the sense that it bypasses the
need to simulate the system, but unfortunately fails to give intuition about wait times scale with
system parameters. Moreover, like all of the works mentioned in this section, their work assumes
that setup times are distributed Exponentially, which turns out to severely limit the utility of their
results; see Section 8.1 for a detailed discussion.
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2.2.3 Distributed Setting

There has also been some work on servers with setup times outside of the centralized queue set-
ting. In [25], the authors consider a queueing system which functions much like the M/M/k/Setup-
Exponential, except, instead of a central queue, each server has its own queue, and there is a
central dispatcher which routes arriving jobs to one of these queues. In this model, they describe
a token-based load balancing and scaling scheme called TABS, and prove that its performance
(as k → ∞) is asymptotically optimal. In particular, they show that the relative energy wastage
and the mean delay both go to 0 under their scheme, by analyzing an appropriate fluid limit. In
a followup paper, [24], the authors consider the performance of TABS in the infinite-buffer case.
They give two results. First, they show that, somewhat counterintuitively, there exist parameter
settings under which the TABS scheme is unstable. Second, they show that, in spite of this finite
instability, for sufficiently large k, the system under TABS is stable. Moreover, its performance
continues to be asymptotically optimal. In our opinion, it is best to think of these results as
complementary to the body of work on the M/M/k/Setup, as one typically does when comparing
distributed queueing work to centralized queueing work. Although all papers discussed deal with
setup times in some capacity, the nature of the questions being asked and answered in [25] and
[24] are very different from the central-queue-oriented work we discuss.

2.3 Scheduling with Setup

Gittins in the G/G/k/Setup. In [19], the authors consider a very general model queueing
model, the G/G/k/Setup, and show that the scheduling performance of the Gittins policy is near-
optimal in this setting. In particular, they explicitly bound the deviation from optimality of the
average waiting time under the Gittins policy, showing that this “suboptimality loss” is uniformly
bounded at all loads. They thus conclude that the Gittins policy is heavy-traffic optimal.

Their work differs from ours in two important ways. First, they investigate a model of setup
where the setup process is never cancelled. While this may be accurate in certain situations, a
reasonable amount of complexity in our problem stems from the fact that the setup process can
be cancelled. Second, they are mainly concerned with bounding the performance of a scheduling
policy as compared to the optimal scheduling policy. - By contrast, our principle results are
concerned with directly characterizing the average waiting time. In that sense, [19] serves as an
interesting study whose results are somewhat orthogonal to ours.

2.4 Prior Work on Deterministic Setup Times

M/G/2/Setup-Deterministic, with dispatching In the control literature, deterministic setup
times have been incorporated into models in order to enhance realism. Hyytiä et al. [20] consider
a dispatching version of the M/G/2/Setup-Deterministic model, and attempt to build near-optimal
policies for the joint control of setup initiation and the dispatching of jobs. We hope that our anal-
ysis here could open the door to more fine-grained stochastic analysis of such control policies.
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M/M/k/Setup-Deterministic, simulation only The only work we have found which discusses
the M/M/k/Setup-Deterministic model explicitly is a simulation-based thesis by Kara [22]. They
observe that the mean delay in the M/M/k/Setup-Deterministic is consistently larger than that
of the M/M/k/Setup-Exponential, and, as the mean setup time 1

α
increases, the relative increase

in mean delay between the M/M/k/Setup-Deterministic and the M/M/k/Setup-Exponential also
increases. We corroborate and expand on their results in Chapter 8.

Algorithms for reducing the effect of setup times on delay and energy usage Setup times
are both a problem from a delay perspective and also from an energy perspective (servers utilize
peak power while in setup [14]). One can of course avoid setup times altogether by always
leaving servers on, but this results in wasted energy as well, since a server which is on, but idle,
utilizes 60-70% of peak energy [14]. To manage power efficiently, several algorithms have been
developed to reduce the costly effects of setup times. One idea is DelayedOff, whereby a one
waits some time before turning off a server, so as to avoid a future setup time [10, 11, 14, 27].
Another idea is routing jobs to the Most Recently Busy server (MRB), so as to minimize the size
of the pool of servers that are turning on and off [10]. Similar to MRB is the idea of creating
a rank ordering of all servers and always sending each job to the lowest-numbered server in the
rank [14]. The goal of all such algorithms is to minimize the Energy-Response-time-Product
(ERP) [10], maximize the Normalized-Performance-Per-Watt (NPPW) [8], or minimize energy
given a fixed tail cutoff for response time [14]. Other ideas for minimizing delay and energy
involve utilizing sleep states in servers, which require more power than being off, but have a
lower setup time [12, 13].
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Chapter 3

Model

In Chapter 3, we discuss our model of interest, the M/M/k/Setup-Deterministic. We begin the
chapter by going through a detailed model description, then discuss how to construct the relevant
stochastic processes via Poisson processes.

3.1 Detailed Model Description
The system behavior, excluding setup. As in the typical M/M/k queue, jobs arrive in a Poisson
process of rate kλ into a FCFS queue where jobs wait to be served at one of k servers. The job at
the head of queue enters service whenever a server frees up, either from a job completing service
or from a server finishing set up. Once a job enters service, it remains in service for Exp(µ)
time before departing. We assume all the servers have identical service and setup properties. As
such, we can assign each server an index from 1 to k, and without loss of generality assume that
departures always occur at the busy server with the highest index; i.e., we re-index the servers
when a job departs so the server with the newly departed job has the highest index among the
busy servers. From here, we define the quantity Z(t) to be the number of busy servers (or jobs
in service) at time t, the quantity Q(t) to be the number of jobs waiting in the queue at time t,
and the quantity N(t) = Q(t)+Z(t) to be the total number of jobs in our system. Excluding the
setup dynamics, one sees that, as promised, our model behaves identically to the M/M/k queue.

The setup dynamics. From here, it suffices to describe precisely how servers will be turned on
and off. We assume that each server is always in one of three states: on, off, or in setup. A given
server remains on only as long as that server remains busy. In other words, a server turns off
when it finishes its current job and the queue is empty. On the other hand, server i begins setup
when a job arrives to the system and there are only i− 1 jobs in the system. Server i remains in
setup until one of two events occurs: either 1) some fixed quantity β time has passed, or 2) there
are fewer than i jobs in the system; accordingly, we refer to β as the setup time of a server. In
the first case, if β time has passed without N(t) dipping below i, then server i has completed its
setup and begins working on the job at the head of the queue. In the second case, if the number
of jobs N(t) dips below i before server i completes setup, then the setup is canceled and server
i turns off. We use Yi(t) to denote the detailed state of server i at time t. If server i is off, we set
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𝑘𝜆

detailed 
stateindex

4

1

3

2

state

off

on

in setup

on

𝑌4 𝑡 = OFF

𝑌1 𝑡 = ON

𝑌3 𝑡 ∈ (0, 𝛽]

𝑌2 𝑡 = ON

Figure 3.1: An example of M/M/k/Setup-Deterministic with k = 4. The state pictured has
Z(t) = 2 busy servers, which means there are 2 jobs in service. There is Q(t) = 1 job in queue,
and thus N(t) = Z(t) +Q(t) = 4 jobs in system.

Yi(t) = OFF; if server i is on, we set Yi(t) = ON; if server i is in setup, we let Yi(t) denote the
remaining amount of time until server i would finish setup, if left uninterrupted. To be precise,
Yi(t) is set to β when server i first initiates setup, and this value decreases at rate 1 until either
setup completes or setup is canceled. For convenience, we assume, without loss of generality,
that ON < s < OFF for every possible remaining setup time s ∈ (0, β]; this ensures that the
detailed state Yi(t) is non-decreasing in i. As a shorthand, we use Y = (Y1(t), Y2(t), . . . , Yk(t))
to denote the vector of detailed server states.

A state descriptor. Accordingly, a Markovian state descriptor for our system at time t is S(t) ≜
(N(t),Y (t)). Note that, since one can recover the number of jobs in service Z(t) from the
detailed server states Y (t), one could also choose the state to be (Q(t),Y (t)). Either suffices
in providing a complete description of the forward dynamics of the system. Furthermore, when
discussing the steady-state distribution of, say, the number of jobs N(t), we use the notation
N(∞).

Some important constants. We define some system parameters which are critical to system
behavior. We use ρ ≜ λ

µ
to refer to the load of our system, i.e., the time-average utilization of an

average server. We call the offered load R ≜ kρ; this is the time-average number of busy servers
in our system. To enforce stability, we require that ρ < 1. As discussed previously, the symbol
β refers to the fixed (Deterministic) setup time of a server.

Busy period notation. Our results can be stated more concisely with two quantities related to
a busy period of an M/M/1 queue. We give the notation below. We use T busy (n, j) to denote
the expectation of the random length of an M/M/1 busy period with arrival rate kλ, service rate
kλ + µj, and which starts with n jobs in the system. Likewise, we use Ibusy (n, j) to denote
expectation of the random time integral of the number of jobs within the M/M/1 over the same

11



April 6, 2024
DRAFT

period. Explicitly, we have
T busy (n, j) =

n

µj
(3.1)

and

Ibusy (n, j) =
n

µj

[
n+ 1

2
+
R

j
+ 1

]
. (3.2)

3.2 Construction
We now discuss how we formally construct this system using Poisson processes; being explicit
here will prove useful when we make coupling arguments in the future.

The arrival and departure processes. We take the number of jobs that have arrived at time
t to be ΠA(t), where ΠA is a Poisson process of rate kλ. In a slight abuse of notation, we
let ΠA([a, b]) denote the number of arrivals that occur in the interval [a, b]; we apply the same
extension to all other counting processes mentioned here. We set the potential departure process
of, say, server i to be Πi(t), where Πi is a Poisson process of rate µ. A potential departure from
server i only “counts” if server i is busy when that potential departure occurs, i.e., if the number
of busy servers Z(t) ≥ i at the time. Thus, the total number of departures from our system by
time t is

D(t) ≜
k∑
i=1

∫ t

0

1 {Z(s) ≥ i} dΠi(s),

where these integrals are with respect to the Πi’s as counting processes.

The number of busy servers Z(t). To find the number of busy servers Z(t), one could count
the number of setup completion events that have occurred so far and the number of server shutoffs
that have occurred so far; this description is a bit difficult to work with. Alternatively, one can
see from the initial description of setup dynamics that server i is on at time t if and only if the
total number of jobs N(s) ≥ i for all s ∈ [t − β, t], where one should recall that β is the setup
time. An easier description of Z(t) follows:

Z(t) = min

(
k, min

s∈[t−β,t]
N(s)

)
.

A departure operator. We can extend our departure process D(t) to a departure operator
D [f(s)] (I) which takes a function f(s) ∈ {0, 1, . . . , k} defined on some interval I and com-
putes the number of departures that would occur in that interval provided that the number of busy
servers Z(s) = f(s), i.e.

D [f(s)] ((a, b]) ≜
k∑
i=1

∫ b

a

1 {f(s) ≥ i} dΠi(s).

Note that we can write the total number of departures using our newly-defined operator asD(t) =
D [Z(s)] ([0, t]).
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Chapter 4

Key Ideas and Techniques

In this chapter, we describe the key techniques underlying the major results of this thesis. We
introduce these techniques separately; they will then be made applied directly throughout the the-
sis. We describe each technique by first describing its general function, then stating its associated
formal definition, then proving the lemma which makes its application general.

4.1 The Method of Intervening Stopping Times (MIST)

4.1.1 Why we need it
The basic function of this lemma is to bound the expected time integral between two random
events in some Markov system, an initial event and a final event. This type of problem arises
often in the study of stochastic systems. In particular, within this thesis, we are mainly concerned
with bounding the average waiting time E [TQ] in the M/M/k/Setup-Deterministic. By applying
Little’s Law [17] and the Renewal Reward theorem [17], we can translate the problem of bound-
ing the average waiting time into the problem of bounding the time integral of the queue length
Q(t) between a specially-defined time 0 state and another stopping time X , i.e.

E [TQ] =
1

kλ
E [Q(∞)] =

1

kλ

E
[∫ X

0
Q(t)dt

]
E [X]

=
1

kλ

E
[∫ X

0
Q(t)dt

]
E
[∫ X

0
1dt
] . (4.1)

From here, it suffices to bound the expectation of these time integrals; this is what the Intervening
Stopping Time Lemma, Lemma 4.1, does.

4.1.2 What it does
The basic idea of this lemma is to break up our random time interval of interest into a random
number of smaller, more manageable pieces. We do this by defining intervening events, moments
where something special happens to the system state that gives us an opportunity to characterize
the system’s behavior. From there, we can define a “small piece” of time as the time in between
these intervening events. For example, in this work, it can often be useful to analyze the system
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around time points where the number of jobs N(t) gets large. Because we work in a system with
setup times, if we have a lot of jobs for a long enough period of time, then, by the end of that
long period of time, we can guarantee that a lot of servers are turned on.

By performing this decomposition of the integral into smaller pieces, we reduce our initial
bounding problem to showing two facts:

• First, we must show that the time integral of these smaller pieces is not too big; in this the-
sis, we typically use martingale arguments combined with worst-case coupling arguments
to prove this fact.

• Second, we must show that not too many of these these smaller pieces actually occur.
For this “not too many” condition, it’s particularly helpful if we can show that, if the i-th
intervening event has occurred, then the (i+1)-th event has at most a constant probability
of occurring.

By formalizing our notion of events using stopping times and applying some ideas from Wald’s
equation, we obtain the Intervening Stopping Time Lemma, Lemma 4.1, which we now state and
prove.

4.1.3 IST Lemma: Statement and Proof

Lemma 4.1 (Intervening Stopping Time Lemma). Given a starting stopping time T0, an ending
stopping time P , and a collection of intervening stopping times (Ti : i ∈ Z+), define the random
variable F to be such that TF ≤ P < TF+1. Now, given some time-varying random variable
Yt ≥ 0 which is a function of the underlying Markov state of the system S(t), suppose that:

1. E
[∫ min(T1,P )

T0
Ytdt

∣∣∣FT0

]
≤ G0(S(T0)),

2. E
[∫ min(Ti+1,P )

Ti
Ytdt

∣∣∣FTi , F ≥ i
]
≤ Gi +B · E [min(Ti+1, P )− Ti|FTi , F ≥ i],

3. and Pr (F ≥ i|FTi , F ≥ i− 1) ≤ 1− pi,

where G0 is also some function of the system state, and the Gi’s, the pi’s, and B are all constants
(possibly depending on system parameters).

Then,

E
[∫ P

T0

Ytdt
]
≤ E [G0 (S(T0))] + Pr (F > 0)

∞∑
j=1

Gj

j∏
i=2

(1− pi) +B · E [P − T0] .

Proof.

We begin with a manipulation of the integral, finding∫ P

T0

Ytdt =
∫ min(T1,P )

T0

Ytdt+
∞∑
i=1

∫ min(Ti+1,P )

min(Ti,P )

Ytdt

=

∫ min(T1,P )

T0

Ytdt+
∞∑
i=1

1Ti<P

∫ min(Ti+1,P )

Ti

Ytdt.
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Applying linearity of expectation and the tower property, we find that

E
[∫ P

T0

Ytdt
]

= E

[
E

[∫ min(T1,P )

T0

Ytdt

∣∣∣∣∣FT0

]]
+

∞∑
i=1

E

[
E

[
1Ti<P

∫ min(Ti+1,P )

Ti

Ytdt

∣∣∣∣∣FTi

]]

= E

[
E

[∫ min(T1,P )

T0

Ytdt

∣∣∣∣∣FT0

]]
+

∞∑
i=1

E

[
1Ti<PE

[∫ min(Ti+1,P )

Ti

Ytdt

∣∣∣∣∣FTi

]]
.

Noting that the event {Ti < P} = {F ≥ i}, we have

= E

[
E

[∫ min(T1,P )

T0

Ytdt

∣∣∣∣∣FT0

]]
+

∞∑
i=1

E

[
1F≥iE

[∫ min(Ti+1,P )

Ti

Ytdt

∣∣∣∣∣FTi

]]

≤ E [G0 (S(T0))] +
∞∑
i=1

E [1F≥i (Gi +B · E [min(Ti+1, P )− Ti|S(Ti), F ≥ i])]

= E [G0 (S(T0))] +B · E [P − T0] +
∞∑
i=1

Gi Pr (F ≥ i).

Applying our final assumption to bound Pr (F ≥ i),

Pr (F ≥ i) = Pr (F > 0)
i∏

j=2

Pr (F ≥ j|F ≥ j − 1)

= Pr (F > 0)
i∏

j=2

E
[
Pr
(
F ≥ j

∣∣F ≥ j − 1,FTj−1

)]
≤ Pr (F > 0)

i∏
j=2

E [1− pj]

= Pr (F > 0)
i∏

j=2

(1− pj).

Applying this final result, we find

E
[∫ P

T0

Ytdt
]
≤ E [G0 (S(T0))] + Pr (F > 0)

∞∑
j=1

Gj

j∏
i=2

(1− pi) +B · E [P − T0] ,

as desired. □
With Lemma 4.1 proven, we are ready to apply the MIST method to obtain our main results.
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Chapter 5

The Lower Bounds

In this chapter, we discuss two of our results, our lower bounds on the average waiting time in
the M/M/k/Setup-Deterministic. First, we discuss why these lower bounds are needed, then state
both bounds, then prove the stronger and more recent bound.

5.1 Why we need a lower bound
From a provisioning standpoint, a lower bound tells us what system parameters necessary to
achieve a certain average waiting time. Accordingly, we now discuss our two lower bounds. The
first lower bound that we present, Theorem 5.1 (the main result of [32]), is the first-ever result
bounding the average waiting time in the M/M/k/Setup-Deterministic. Notably, it is also the first
closed-form result bounding the average waiting time in any M/M/k/Setup system. The second
lower bound that we present, Theorem 5.2 (one of the two main results in [31]), is an improve-
ment of Theorem 5.1. The improved lower bound now applies to systems with an arbitrarily
large numbers of servers k, removes an unnecessary and restrictive condition on the system pa-
rameters, and also has a far simpler proof. We state both theorems, but only prove the improved
theorem.

5.2 The First Lower Bound
We now state the first lower bound for the average queue length in the M/M/k/Setup-Deterministic,
from [32].
Theorem 5.1 (First Lower Bound On Average Queue Length). In an M/M/k/Setup-Deterministic
system with load ρ, setup time β ≥ 1000 1

µ
, and offered load R ≜ kρ ≥ 128, if the setup time

β ≥ 1
µ
log2(kρ), then the average queue length E [Q(∞)] is lower bounded by

E [Q(∞)] ≥

1
2
β2 µ

√
R

2
+ Ibusy

([
(µβ − 1)

√
R
2

− k(1− ρ)
]+
, k −R

)
C

(old)
1

(
3β + 1

µ

)
+ β + C

(old)
2

µβ
√
R

µk(1−ρ) + C
(old)
3

1
µ
log
(
C

(old)
2 µβ

√
R
) ,

where C(old)
1 , C

(old)
2 , and C(old)

3 are absolute constants.
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5.3 The New Lower Bound

5.3.1 The New Lower Bound: Theorem Statement

After tightening and clarifying our techniques into the MIST method of Chapter 4, we obtained
the following lower bound; its proof follows.
Theorem 5.2 (Improved Lower Bound on Average Queue Length). In an M/M/k/Setup-Deterministic,
let the stabilizing number R ≜ kρ ≜≥ 100 and β ≥ 100 1

µ
. Then,

E [Q(∞)] ≥
L1β

2
√
R + Ibusy

([
L1β

√
R− (k −R)

]+
, k −R

)
2.08β + 1

µ
F1β

√
R

k−R + 1
µ
3
2
ln(β) + 1

µ
ln(F1D1) +

2
µ
+
[
D2 +

D3√
R

]
max

(
1

D1
√
µβ
, 1√

R

) ,
where L1, F1, D1, D2, and D3 are absolute constants.

5.3.2 The New Lower Bound: Proof Outline.

Basic Structure. We prove Theorem 5.2 via the MIST method. As noted in Chapter 4, we
begin by applying the Renewal-Reward theorem to the queue length Q(t), defining our renewal
points as those points in time where the (R + 1)-th server turns off. Defining time 0 to be one
of these points, and defining the cycle time X ≜ min {t > 0 : Z(t−) = R + 1, Z(t) = R} as the
next point, this gives

E [Q(∞)] =
E
[∫ X

0
Q(t)dt

]
E [X]

.

To obtain our lower bound, it suffices to lower bound the numerator and upper bound the de-
nominator of this fraction, i.e. lower bound E

[∫ X
0
Q(t)dt

]
and upper bound E [X]. The time

integral lower bound is handled by Lemma 5.1, which we state at the end of this section. The
cycle length upper bound is split into two separate lemmas: Lemma 5.2 upper bounds the length
of the cycle’s “first part” and Lemma 5.3 bounds the length of its “second part”.

Decomposition into phases. However, before we state or prove these lemmas, we first dis-
cuss the decomposition of the renewal cycle [0, X) into two parts; one might think of this as
a “miniature” application of the MIST method. We begin by noting that the end of the re-
newal cycle is moment when the (R + 1)-th server turns off. Since the (R + 1)-th server is
off at the start of a renewal period, we can break the renewal cycle into two phases based on
whether the (R + 1)-th server has turned on yet. Formally, we define the accumulation time
TA ≜ min {t > 0 : Z(t) = R + 1} as the first moment that the (R+ 1)-th server turns on. From
here, we can focus separately on the accumulation phase, from time 0 to time TA, and the draining
phase, from time TA to time X .

With this decomposition, we can now state our main lemmas. Their proofs follow in sequence
afterwards.
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Lemma 5.1 (Lower bound on Cycle Integral). Define busy period integral Ibusy (x, z) as

Ibusy (x, z) ≜
x

µz

[
x+ 1

2
+

1

1− kλ
kλ+µz

]
=

x

µz

[
x+ 1

2
+
R

z

]
.

For the time integral of the queue length Q(t) over a renewal cycle, we have

E
[∫ X

0

Q(t)dt
]
≥ 1

2
µβ2L1

√
R + Ibusy

([
µβL1

√
R− (k −R)

]+
, k −R

)
.

Lemma 5.2 (Upper bound on Accumulation Phase Length). Recall that

TA ≜ min {t > 0 : Z(t) ≥ R + 1}

is the amount of time until the (R + 1)-th server turns on. Then we can bound the expectation
E [TA] by

E [TA] ≤ e
1

24Rβ

(√
1 +

1

2Rβ

)[
1 +

e
1

12R

√
2µβ

]
β ≤ 1.08 ∗ β.

Lemma 5.3 (Upper bound on Draining Phase Length). Recall that the accumlation time

TA ≜ min {t > 0 : Z(t) ≥ R + 1}

is the amount of time until the (R + 1)-th server turns on and the cycle time X is the moment
when it turns off. Then, one can bound E [X − TA] by

E [X − TA] ≤ β+
1

µ

F1β
√
R

k −R
+
1

µ

3

2
ln(β)+

1

µ
ln(F1D1)+

2

µ
+

[
D2 +

D3√
R

]
max

(
1

D1

√
µβ

,
1√
R

)
,

where F1, D1, D2, and D3 are constants not depending on system parameters.

5.3.3 Proof of Lemma 5.1: Lower Bound on Cycle Integral.

Lemma 5.1 Proof Outline

Basic Strategy. First, we split the first phase [0, TA) into epochs, where epoch i begins when
the number of busy servers Z(t) first drops to R − i, and an epoch ends either when the next
epoch starts or when the first phase ends. Our goal will be to analyze a specific “significant”
epoch. In particular, we say that an epoch is long if it lasts for longer than a setup time β.
Because the accumulation phase ends when the (R + 1)-th server turns on, at least one epoch
must be long. We use L to denote the index of the first long epoch. From here, we argue via a
martingale/coupling argument that the expected time integral over the first β time in epoch L is
at least 1

2
β2E [L]. To bound the integral afterwards, we couple the behavior of the total number

of jobs N(t) to the queue length in an M/M/1 queue with arrival rate kλ and departure rate kµ.
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Formalization. Define the stopping time τi ≜ min {t ≥ 0 : N(t) ≤ R− u} as the beginning
of epoch i. We say that the epoch occurs is τi < TA, and define the end of epoch i as γi ≜
min (τi+1, TA) the moment when either epoch i+1 begins or when the first phase ends. If epoch
i occurs, we say it is long if γi − τi ≥ β. Let L ≜ min {i ∈ N : γi − τi ≥ β} be the index of the
first long epoch. It suffices to show two claims; we state and prove them in sequence.

5.3.4 Lower Bound on Integral until τL + β.

We show the following claim.
Claim 5.1. Let L be the index of the first long epoch. Then,

E
[∫ τL+β

0

Q(t)dt
]
≥ 1

2
µβ2L1

√
R, (5.1)

where L1 is some absolute constant.

Claim 5.1 Proof Strategy. First, we show that the initial integral is bounded by

E
[∫ τL+β

0

Q(t)dt
]
≥ 1

2
µβ2E [L] . (5.2)

Afterwards, we give a bound on E [L], showing that

E [L] ≥ L1

√
R. (5.3)

Proof of (5.2), Bound in terms of E [L].
To show (5.2), we first condition on whether L ≥ i, giving

E
[∫ τL+β

0

Q(t)dt
]
=

∞∑
i=0

E

[∫ min(τi+β,τi+1)

τi

Q(t)dt1L≥i

]

=
∞∑
i=0

E

[∫ min(τi+β,τi+1)

τi

Q(t)dt

∣∣∣∣∣Fτi

]
Pr (L ≥ i).

To further develop this conditional expectation, we note that during the interval [τi,min (τi + β, τi+1)),
the system must have exactly Z(t) = R − i busy servers running, meaning that Q(t) = N(t)−
(R− i). Defining a coupled process Q̃(t) as

Q̃(t) = A(τi, t)−D [R− i] (τi, t) ,

we see that Q(t) and Q̃(t) coincide during the interval in question. Moreover, one can redefine
the stopping time γ = τi+1 as min

{
t > τi : Q̃(t) = −1

}
. Noting that Q (min (γ, t)) = −1 for
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any time t > γ, we find that∫ min(τi+β,τi+1)

τi

Q(t)dt =
∫ min(τi+β,τi+1)

τi

Q̃(t)dt

=

∫ min(τi+β,τi+1)

τi

Q̃ (min (t, τi+1)) dt+
∫ τi+β

min(τi+β,τi+1)

(
Q̃ (min (t, τi+1)) + 1

)
dt

=

∫ τi+β

τi

Q̃ (min (t, τi+1)) dt+ [β −min (β, τi+1 − τi)]

≥
∫ τi+β

τi

Q̃ (min (t, τi+1)) dt.

Taking the conditional expectation at time τi, we find

E
[∫ τi+β

τi

Q̃ (min (t, τi+1)) dt
∣∣∣∣Fτi

]
=

∫ τi+β

τi

E
[
Q̃ (min (t, τi+1))

∣∣∣Fτi

]
dt.

Noting that VL(t) = Q̃(t)− µi [t− τi] is a martingale, and that min (t, τi+1) is an almost-surely
bounded stopping time, we have that

Q̃(τi) = VL(τi) = 0

= E [VL (min (t, τi+1))|τi]

= E
[
Q̃ (min (t, τi+1))

∣∣∣Fτi

]
− µiE [min (t, τi+1)|Fτi ] .

Since

E [min (t, τi+1)|Fτi ] ≥ t · Pr (τi+1 − τi ≥ t) ≥ t · Pr (τi+1 − τi ≥ β) = tPr (L = i|L ≥ i) ,

we have

Pr (L ≥ i)E

[∫ min(τi+β,τi+1)

τi

Q(t)dt

∣∣∣∣∣L ≥ i

]
≥ Pr (L ≥ i)E

[∫ τi+β

τi

Q̃ (min (t, τi+1)) dt
∣∣∣∣L ≥ i

]
≥
∫ τi+β

τi

µitPr (L = i)

= µ
β2

2
iPr (L = i)

Summing across all i, we obtain (5.2).

Proof Sketch for (5.3), bound on E [L].

We defer the full proof of this to Section A.9, and for now give a proof sketch.
We prove (5.3) by first showing that

Pr (L > j|L ≥ j) ≥
(
1− j

R

)(
1− b1√

µβR

)
,

20



April 6, 2024
DRAFT

where b1 = 2√
π

. Next, we show that this implies that, for any δ ∈ (0, 1) and any j < δR,

Pr (L > j) ≥
(
1− b1√

µβR

)j+1

e−
j(j+1)

2R
1

1−δ .

From here, we use the sum of tails formula E [L] =
∑∞

j=0 Pr (L > j) to show

E [L] ≥
(
1− b1√

µβR

)([√
π

2
(1− δ)− 1.15(1− δ)√

µβ

]√
R− 1

2
− 2(1− δ)

δ
e−R

δ2

1−δ

)
.

Choosing δ = 2√
R

then noting that µβ ≥ 100 and R ≥ 100 gives the result.

5.3.5 Lower Bound on Integral after τL + β.

To finish our lower bound on the integral, we now show the following claim.
Claim 5.2. Let L be the index of the first long epoch. Then,

E
[∫ X

τL+β

Q(t)dt
]
≥ Ibusy

([
µβL1

√
R− (k −R)

]+
, k −R

)
(5.4)

where L1 is some absolute constant.

Claim 5.2: Proof Strategy. First, we show that the remaining integral is bounded by

E
[∫ X

τL+β

Q(t)dt
]
≥ Ibusy ([E [N(τL + β)]− k]+ , k −R

)
. (5.5)

Then, we use martingales again to show that

E [N (τL + β)] ≥ R + µβE [L] . (5.6)

Applying (5.3), our bound on E [L], we obtain the result.

Proof of (5.5), Bound in terms of E [N(·)].

To prove (5.5), we make a simple coupling argument. Let ηk ≜ min {t ≥ τL + β : N(t) ≤ k}.
Since the draining phase starts at TA ≥ τL+β and the end of the cycleX = min {t ≥ TA : N(t) ≤ R},
we know that X ≥ ηk. Moreover, we know the number of busy servers Z(t) ≤ k; it follows by
Claim A.1 that we can define Ñ(t) as

Ñ(t) ≜ N (τL + β) + A (τL + β, t)−D [k] ((τL + β, t))
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and have Ñ(t) ≤ N(t) for any t > τL + β. Even further, we can defined a coupled hitting time
η̃k ≜ min

{
t > τL + β : Ñ(t) ≤ k

}
which must happen before ηk. In other words,∫ X

τL+β

Q(t)dt ≥
∫ ηk

τL+β

Q(t)dt

≥
∫ ηk

τL+β

[N(t)− k] dt

≥
∫ η̃k

τL+β

[
Ñ(t)− k

]
dt.

This final term is just the time integral of the number of jobs in system over a M/M/1 busy
period started by [N (τL + β)− k]+ jobs, where jobs arrive at rate kλ and depart at rate kµ.
Accordingly, we have

E
[∫ X

τL+β

Q(t)dt
]
≥ E

[
Ibusy ([N (τL + β)− k]+ , k −R

)]
≥ Ibusy (E [N (τL + β)− k]+ , k −R

)
≥ Ibusy (E [[N (τL + β)−R− (k −R)]+

]
, k −R

)
,

where in the last two lines we have applied Jensen’s inequality. □

Proof of (5.6), Bound on E [N(·)].

To bound E [N(τL + β)], we condition on the value of L, then make a martingale argument.

E [N(τL + β)] =
R∑
i=0

E [N(τi + β)1L=i]

=
R∑
i=0

E [N(τi + β)1L=i,L≥i]

≥
R∑
i=0

Pr (L ≥ i)E [N(τi + β)1L=i|L ≥ i].

Continuing with this conditional expectation,

E [N(τi + β)1L=i|Fτi ]

= E
[
N(τi + β)1τi+β<τi+1

∣∣Fτi

]
= E

[
[N(τi + β)− (R− (i+ 1))]1τi+β<τi+1

∣∣Fτi

]
+ (R− i− 1) Pr (τi + β < τi+1|Fτi)

= E [N(min (τi + β, τi+1))− (R− (i+ 1))|Fτi ] + +(R− i− 1) Pr (τi + β < τi+1|Fτi)

= 1 + µiE [min (β, τi+1 − τi)] + (R− i− 1) Pr (τi + β < τi+1)

≥ 1 + µiβ Pr (τi+1 − τi ≥ β) + (R− i− 1) Pr (τi + β < τi+1)

= 1 + µiβ Pr (L = i|L ≥ i) + (R− i− 1) Pr (L = i|L ≥ i) . (5.7)
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Summing across i, we find

E [N(τL + β)] =
R∑
i=0

Pr (L ≥ i) ((5.7))

= (1 + E [L]) + (µβE [L]) + (R− E [L]− 1)

= R + µβE [L] ,

as desired. □
Combining Claims 5.1 and 5.2, we obtain a lower bound on E

[∫ X
0
Q(t)dt

]
, proving Lemma 5.1.

5.3.6 Proof of Lemma 5.2: Upper Bound on the Accumulation Time E [TA]

Defining a coupling. To prove Lemma 5.2, we first note that, during the accumulation phase,
we have two bounds on the number of busy servers Z(t): it must be less than the total number
of jobs N(t) and it must be less than R; the former because every busy server must be working
on a job, and the latter because otherwise the accumulation phase would be over. Thus, we can
define a coupled M/M/R system for which the number of jobs Ñ(t) in the coupled system is
always at least the number of jobs N(t) in the original system.

How we use the coupling. To use this coupled process to bound E [TA], recall that the accu-
mulation point TA is the first time the (R+1)-th server turns on. Accordingly, one can also think
of this as the first time that there has been at least R + 1 jobs in the system for β time. Thus, if
we define a coupled accumulation point T̃A ≜ min

{
t ≥ β : mins∈[t−β,t) Ñ(t) ≥ R + 1

}
, then

we know T̃A ≥ TA. In other words, it suffices to bound E
[
T̃A

]
.

General Strategy. We bound E
[
T̃A

]
using the MIST method of Lemma 4.1. As such, we

define a few stopping times, then list the preconditions/claims that we will satisfy to complete
the proof of Lemma 5.2.

Definition of γ and α. Let the initial cycle-downcrossing occur at α0 ≜ 0 and iteratively define
the upcrossings γ and downcrossings α as

γi ≜ min
{
t ≥ αi : Ñ(t) ≥ R + 1

}
and

αi+1 ≜ min
{
t ≥ γi : Ñ(t) ≥ R + 1

}
.
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Application of Lemma 4.1, the IST Lemma. Applying Lemma 4.1 using 0 = α0 as our
starting point, the coupled accumulation point T̃A as our ending point, our test function as Yt = 1,
and the cycle-upcrossings (αi) as our intervening stopping times, we now must prove that

E [γi − αi|nα ≥ i] ≤ 1

µ
e

1
12R

√
1 +

1

R

√
2π√
R

≤ c3

µ
√
R
, (5.8)

E
[
min

(
T̃A, αi+1

)
− γi

∣∣∣nα ≥ i
]
≤ b1

√
β

µR
+

6

µR
, (5.9)

and

Pr (nα ≥ i+ 1|nα ≥ i) ≤ 1− b1√
2
e−

1
3(µ2Rβ−1)

1√
µ2Rβ + 2

≤ 1− b1c4√
µRβ

, (5.10)

where b1 ≜
√

2
π

, c3 = 1.001
√
2π, and c4 = 0.499.

Completion of Proof, assuming (5.8), (5.9), and (5.10). Applying Lemma 4.1, one finds that

E
[
T̃A

]
=

∞∑
i=0

E
[
min

(
T̃A, αi+1

)
− αi

∣∣∣nα ≥ i
]
Pr (nα ≥ i)

≤
[

c3

µ
√
R

+
b1
√
β√

µR
+

6

µR

] √
µRβ

b1c4

=
1

µ

[
c3
b1c4

√
µβ +

1

c4
β +

6

b1c4

√
µβ

R

]
.

Proof of (5.8): Upper bound on initial up-crossing time.

To prove (5.8), we note that, since our coupled system is anM/M/R, the expected time E [γi − αi|nα ≥ i]
is simply the expected passage time from state R to (R+ 1) in an M /M /R ( and equivalently an
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M /M /R/(R + 1), an M /M /R which can contain only R + 1 jobs. Solving, one finds that

E
[
TR→(R+1)

]
≤ E

[
T(R+1)→(R+1)

]
=

1

µ(R + 1)

1

πR+1

=
1

µ(R + 1)

∑R+1
i=0

Ri

i!
RR+1

(R+1)!

≤ 1

µ(R + 1)
eR

(R + 1)!

RR+1

≤ 1

µ(R + 1)
eR
e

1
12(R+1

√
2π(R + 1)(R + 1)R+1e−(R+1)

RR+1

= e
1

12R
1

µ

√
2π

√
R + 1

R

(
1 +

1

R

)R
e−1

≤ 1

µ
e

1
12R

√
1 +

1

R

√
2π√
R

≤ 1

µ
1.006

√
2π√
R

≜
c3

µ
√
R

Proof of (5.9): Bound on time between up-crossings.

To bound the expected time E
[
min

(
T̃A, αi+1

)
− γi

∣∣∣nα ≥ i
]
, we first note that, if γi+β ≤ αi+1,

then T̃A = γi+β. Likewise, if γi+β > αi+1, then T̃A > αi+1. It follows that, given that nα ≥ i,
the time min

(
T̃A, αi+1

)
= min (β + γi, αi+1). Thus, we have that

E
[
min

(
T̃A, αi+1

)
− γi

∣∣∣nα ≥ i
]
= E [min (β, αi+1 − γi)|nα ≥ i] =

∫ β

0

Pr (αi+1 − γi > s|nα ≥ i) ds.

We continue by bounding this tail probability. To begin, note that, while Ñ(t) stays above
R+1, the dynamics of Ñ are precisely that of a critically-loaded M /M /1 queue with arrival rate
and departure rate equal to kλ. The tail probability we are interested in bounding is precisely
the probability that a busy period (started with 1 job) in such a system lasts longer than s time.
Applying Claim A.8, one finds that, for any t ≥ 3

µ2R
,

Pr (αi+1 − γi > s|nα ≥ i) ≤ b1

(
1√
µ2Rs

+
b2

(µ2Rs)3/2

)
.
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Integrating, we find that∫ β

0

Pr (αi+1 − γi > s|nα ≥ i) ds ≤ 3

µ2R
+

b1√
2

∫ β

3
µ2R

1√
µ2Rs

+
b2

(µ2Rs)3/2
ds

≤ 3

µ2R
+

b1√
2

[√
2β

µR
+ b2

√
2

3

1

µR

]

= b1

√
β

µR
+

(
3

2
+ (b1 + 2.5)

√
2

3

)
1

µR

≤ 2√
π

√
β

µR
+

6

µR
.

□

Proof of (5.10): Bound on probability of another γ up-crossing.

To prove (5.10), it suffices to note that, upon conditioning on the filtration at γi, the probability
Pr (nα ≥ i+ 1|nα ≥ i) is simply the probability that a busy period in a critically-loaded M/M/1,
with arrival and departure rate equal to µR, ends before β time has passed. Applying Claim A.8,
one finds that this is

Pr (nα ≥ i+ 1|nα ≥ i) ≥ 1− b1√
2
e−

1
3(µ2Rβ−1)

1√
µ2Rβ + 2

.

□

5.3.7 Proof of Lemma 5.3: Upper Bound on the Cycle Time E [X − TA].

We now prove the upper bound on E [X − TA]. We make use of the “wait-busy” idea from
Section 6.2.2 as well as our main tool, Lemma 4.1. As such, we begin by defining some stopping
times.

Definition of ζ(d)i and ζ
(u)
i . Recall that the draining phase begins at time TA. Let ML ≜

min
(
k −R,max

( √
R

D1
√
β
, 1
))

be a specially-set analysis threshold. Let the stopping time ζ(d)1 ≜

min {t ≥ TA : N(t) < R +ML} be the first time the number of jobs N(t) drops below R+ML,
and recursively define

ζ
(u)
i ≜ min

{
t ≥ ζ

(d)
i : N(t) ≥ R +ML

}
and

ζ
(d)
i+1 ≜ min

{
t ≥ ζ

(u)
i : N(t) < R +ML

}
.
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Specification Step. Now, we apply Lemma 4.1 using the accumulation point TA as our initial
point, the cycle end X as our ending point, the constant function Yt = 1 as our test function,
and the draining-downcrossing points

(
ζ
(d)
i

)
as our intervening points; we use nζ to count the

number of intervening points. To complete the proof, we must show that the following claims:

E
[
ζ
(d)
1 − TA

]
≤ β +

1

µ

F1β
√
R

k −R
+

1

µ

3

2
ln(β) +

1

µ
ln(F1D1), (5.11)

E
[
min

(
X, ζ

(d)
i+1

)
− ζ

(d)
i

∣∣∣nζ ≥ i
]
≤ D2

µ
√
R

+
D3

µR
+

2

µML

(5.12)

Pr (nζ ≥ i+ 1|nζ ≥ i) ≤ 1

ML

. (5.13)

Completion of Proof assuming (5.11), (5.12), and (5.13). Before proving the claims, we now
prove the lemma. It suffices to give a bound on E

[
X − ζ

(d)
1

]
; applying Lemma 4.1 gives

E
[
X − ζ

(d)
1

]
≤ML

[
D2

µ
√
R

+
D3

µR
+

2

µML

]
=

2

µ
+

[
D2 +

D3√
R

]
max

(
1

D1

√
µβ

,
1√
R

)
.

Proof of (5.11).

To bound E
[
ζ
(d)
1 − TA

]
, we make a coupling argument then apply basic results on M/M/1 busy

periods. Moreover, instead of proving (5.11) directly, we first show a more general claim.
Claim 5.3. For ML ≤ j ≤ N(TA) − R, define ηj as the first time after TA that N(t) ≤ R + j.
Note that this means that ηN(TA) = TA and ηML

= ζ
(d)
1 . Then we have the following bound:

E
[
ηML

− ηj
∣∣Fηj

]
≤ YR+j(ηj) +

1

µ

j∑
i=ML

1

min (i, k −R)
.

Afterwards, we complete the proof by noting that [N(TA)− k]+ ≤ [N(TA)−R], taking
expectations, applying Jensen’s inequality to the minimum function and the ln(·) (which is con-
cave), using the bound on E [N(TA)−R] from Claim 6.7, then letting h =ML.

Proof of Claim 5.3. We prove Claim 5.3 by induction. In the base case, suppose that j =
ML + 1. Note that at time ηML+1, the numbers of jobs N(ηML+1 = R + ML + 1 and the
remaining time until the (R + ML + 1)-th server turns on is YR+ML+1 (ηML+1). As such, we
can simply wait until either that server turns on, in which case we can analyze the system as
an M/M/1 busy period with departure rate µmin (R +ML + 1, k), or the number of jobs N(t)
drops below R +ML + 1 on its own. In other words, (using j here to save space)

E
[
ηj−1 − ηj

∣∣Fηj

]
≤ YR+j (ηj)+

E
[
[N (ηj + YR+j (ηj))− (R + (j − 1))]1ηj−1>ηj+YR+j(ηj)

∣∣Fηj

]
µmin (j, k −R)

.
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Now, we reframe the expectation as an expectation up to a stopping time. We note that, if
ηj−1 > ηj + YR+j (ηj), then we have that

N (ηj + YR+j (ηj)) = N (min (ηj + YR+j (ηj) , ηj−1)) .

Likewise, if ηj−1 ≤ ηj + YR+j (ηj), then

R + j − 1 = N (ηj−1) = N (min (ηj + YR+j (ηj) , ηj−1)) .

Using this and applying a simple coupling argument, one sees that

E
[
[N (ηj + YR+j (ηj))− (R + (j − 1))]1ηj−1>ηj+YR+j(ηj)

∣∣Fηj

]
= E

[
N (min (ηj + YR+j (ηj) , ηj−1))− (R + j − 1)

∣∣Fηj

]
≤ N (ηj)− (R + j − 1) = 1.

Thus, we find that

E
[
ηj−1 − ηj

∣∣Fηj

]
≤ YR+j (ηj) +

1

µmin (j, k −R)
.

Inductive case. The inductive case proceeds in much the same way, except now, if N(t) does
drop belowR+j “early”, then we can factor in the time that has elapsed in the value of YR+j(ηj).
In particular, note that, since the (R + j)-th server would have already turned on,

E
[
ηML

− ηj
∣∣Fηj

]
1ηj≥ηj+1+YR+j+1(ηj+1) ≤

1

µ

j∑
i=ML

1

µmin (i, k −R)
1ηj≥ηj+1+YR+j+1(j+1).

It follows that

E
[
ηML

− ηj
∣∣Fηj

]
≤ YR+j (ηj)1ηj<ηj+1+YR+j+1(ηj+1) +

1

µ

j∑
i=ML

1

µmin (i, k −R)
.

Now, we note that

YR+j (ηj)1ηj<ηj+1+YR+1+j(ηj+1) = [YR+j (ηj) + ηj − ηj]1ηj<ηj+1+YR+1+j(ηj+1)

= [YR+j (ηj+1) + ηj+1 − ηj]1ηj<ηj+1+YR+1+j(ηj+1)

≤ [YR+j+1 (ηj+1) + ηj+1 − ηj]1ηj<ηj+1+YR+1+j(ηj+1)

= [YR+j+1 (ηj+1) + ηj+1 − ηj]
+ ,

so that we find

E
[
ηML

− ηj
∣∣Fηj

]
≤ [YR+j+1 (ηj+1) + ηj+1 − ηj]

+ +
1

µ

j∑
i=ML

1

µmin (i, k −R)
.

Finally, we note that

E
[
ηj − ηj+1

∣∣Fηj+1

]
≤ E

[
min (ηj − ηj+1, YR+j+1 (ηj+1))

∣∣Fηj+1

]
+

1

µmin (j + 1, k −R)
.

Summing these final two expressions gives the inductive result, proving Claim 5.3.
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Using Claim 5.3. Thus, we obtain that, using Hi to denote the i-th harmonic number,

E
[
ζ
(d)
1 − TA

∣∣∣FTA

]
≤ β +

1

µ

[N(TA)− k]+

k −R
+

1

µ

[
Hmin(N(TA)−R,k−R) −HML

]
≤ β +

1

µ

[N(TA)−R]+

k −R
+

1

µ
ln

(
min (N(TA)−R, k −R)

ML

)
.

Taking expectations and applying Jensen’s inequality twice, we find

E
[
ζ
(d)
1 − TA

∣∣∣FTA

]
≤ β +

1

µ

F1µβ
√
R

k −R
+

1

µ
ln

(
F1µβ

√
R

ML

)

≤ β +
1

µ

F1µβ
√
R

k −R
+

1

µ
ln

 min
(
F1µβ

√
R, k −R

)
min

(
max

(
1,

√
R

D1
√
β

)
, k −R

)


≤ β +
1

µ

F1µβ
√
R

k −R
+

1

µ
ln
(
F1D1β

3/2
)

= β +
1

µ

F1µβ
√
R

k −R
+

1

µ

3

2
ln (β) +

1

µ
ln (F1D1) .□

Proof of (5.12).

To bound the expectation E
[
min

(
ζ
(d)
i+1, X

)
− ζ

(d)
i

∣∣∣F
ζ
(d)
i

]
, we split the interval into two parts,[

min
(
ζ
(u)
i , X

)
− ζ

(d)
i

]
and

[
ζ
(d)
i+1 − ζ

(d)
i

]
.

To bound the expectation of the first quantity, it suffices to note that, if we couple the system
to an M/M/∞, the coupled number of jobs Ñ(t) will reachR+ML only after the original system.
Using Claim A.10 to bound this passage time, we thus know that

E
[
min

(
ζ
(u)
i , X

)
− ζ

(d)
i

∣∣∣F
ζ
(d)
i

]
≤ E

[
min

(
T
M/M/∞
(R+ML−1)→(R+ML)

+ ζ
(d)
i , X

)
− ζ

(d)
i

∣∣∣F
ζ
(d)
i

]
≤ E

[
T
M/M/∞
(R+ML−1)→(R+ML)

]
≤ D2√

R
.

To bound the expectation of the second quantity, we provide two bounds. First, we again
make use of the “wait-busy” idea; as we argued in the proof of (5.11),

E
[
ζ
(d)
i+1 − ζ

(u)
i

∣∣∣F
ζ
(u)
i

]
≤ E

[
min

(
ζ
(d)
i+1 − ζ

(u)
i , β

)∣∣∣F
ζ
(u)
i

]
+

1

µML

.

From here, we note, by coupling to an M/M/1 with arrival rate and departure rate both equal to
kλ, we can bound E

[
min

(
ζ
(d)
i+1 − ζ

(u)
i , β

)∣∣∣ζ(u)i < X
]

by the expected minimum between β and
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the length of a single-job busy period in that system. Applying Claim A.9, we can complete the
proof, finding that

E
[
min

(
ζ
(d)
i+1 − ζ

(u)
i , β

)∣∣∣F
ζ
(u)
i

]
≤ D1

√
β√
µR

+
6

µR
.

For the second bound, we simply note that, during the draining phase, the number of busy
servers Z(t) ≥ R + 1. It follows from a simple coupling argument that

E
[
min

(
ζ
(d)
i+1 − ζ

(u)
i , β

)∣∣∣F
ζ
(u)
i

]
≤ 1

µ
.

Combining the bounds pessimistically, we find that

E
[
min

(
ζ
(d)
i+1, X

)
− ζ

(d)
i

∣∣∣F
ζ
(d)
i

]
≤ D2

µ
√
R

+
D3

µR
+

1

µML

+min

(
D1

√
β√
µR

,
1

µ

)
≤ D2

µ
√
R

+
D3

µR
+

2

µML

Proof of (5.13).

To bound the probability of an additional downcrossing, we again make a coupling argument.
In particular, we couple again to the system which only has R servers busy, which gives an
upper bound on the number of jobs in the system N(t). If, in our coupled system, we reach
Ñ(t) = R + ML before we reach Ñ(t) = R, then another upcrossing must have previously
occurred in the original system, and thus another downcrossing must also occur. But, of course,
we know classically that the probability that this happens is just 1

ML
; this is precisely what is

asserted by (5.13). □

5.4 The Lower Bounds: Review of Findings
In this chapter, we proved two lower bounds on the average waiting time in the M/M/k/Setup-
Deterministic. The first lower bound, Theorem 5.1, was the first-ever explicit result for the
average waiting time in this model. The second lower bound, Theorem 5.2, is a considerable
strengthening of Theorem 5.1, and also was far easier to prove once we made use of the MIST
method.
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Chapter 6

The Upper Bound

In this chapter, we present our upper bound on the average waiting time in the M/M/k/Setup-
Deterministic.

6.1 Why we need an upper bound.
From a provisioning standpoint, an upper bound tells us what system parameters sufficient to
achieve a certain average waiting time. By combining this bound with our lower bound, we find
out what is necessary and sufficient for good performance. Theoretically-speaking, having the
two bounds allows us to fully characterize how the average waiting time in the M/M/k/Setup-
Deterministic scales with its system parameters, modulo some constant multiplicative factors.

6.2 The Upper Bound
We now state and prove the upper bound.
Theorem 6.1 (Upper Bound on Average Queue Length). For an M/M/k/Setup-Deterministic with
an offered load R ≜ kρ ≥ 100 and a setup time β ≥ 1000 1

µ
, the expected number of jobs in

queue in steady state is upper-bounded as

E [Q(∞)] ≤ A1

√
µβR+A2

R

M
+
A3β

2µ
√
R + Ibusy

(
B5

√
µβR +B6µβ

√
R,M

)
+ A4I

busy (M,M)

β + T busy
(
D1βµ

√
R, k −R

) ,

where A1, A2, A3, A4, B5,B6, and D1 are constants independent of system parameters, and

M ≜ min
(
C1

√
µβR, k −R

)
for some constant C1 independent of system parameters.

We now describe the full proof of Theorem 6.1. As discussed in Chapter 4, it suffices to
prove the three following lemmas.
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Lemma 6.1 (Accumulation Period Upper Bound). Suppose the system begins at time 0 with R
jobs in service and no jobs in the queue (and thus no servers in setup), and define the accumula-
tion time

TA ≜ min {t ≥ 0 : Z(t) = R + 1}

to be the moment the (R + 1)-th server turns on.

Then,

E
[∫ TA

0

[N(t)−R]dt
]
≤ B1

√
µβR · E [TA] +B2β

2µ
√
R,

where B1 = 3.6 and B2 = 1.04.

Lemma 6.2 (Draining Period Upper Bound). Recall that accumulation time TA is the first (and
only) time the (R+1)-th server turns on during a renewal cycle, and that the next renewal point
X = min {t > TA : Z(t) = R} is simply the next time the (R + 1)-th server turns off. Then,

E
[∫ X

TA

[N(t)−R]+dt
]

≤
(
B5

√
µβR +B6µβ

√
R
)
· β + Ibusy

(
B5

√
µβR +B6µβ

√
R,M

)
+B7

βR

M

+

[
2M + 2

R

M

]
E [X − TA] +

1

1− p2
Ibusy (M,M) ,

where all of these quantities are defined in Chapter 3 and Section A.6.

Lemma 6.3 (Cycle Length Lower Bound). Suppose the system begins at time 0 with R jobs in
service and no jobs in the queue (and thus no servers in setup), and let

X ≜ min
{
t > 0 : Z(t−) = R + 1, Z(t) = R

}
be the next time the (R + 1)-th server turns off.

Then,

E [X] ≥ β + T busy
(
D1βµ

√
R, k −R

)
,

where D1 is a constant independent of system parameters.

After proving these lemmas, the result follows by a bit of algebra. First, note that, by sum-
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ming the two integral bounds, one obtains

E
[∫ X

0

[N(t)−R]dt
]

≤ B1

√
µβR · E [TA] +B2β

2µ
√
R +

(
B5

√
µβR +B6µβ

√
R
)
· β

+ Ibusy
(
B5

√
µβR +B6µβ

√
R,M

)
+B7

βR

M
+

[
2M + 2

R

M

]
E [X − TA] +

1

1− p2
Ibusy (M,M)

≤ B1

√
µβR · E [TA] +B2β

2µ
√
R +

(
B5

√
µβR

)
E [TA] +B6µβ

2
√
R

+ Ibusy
(
B5

√
µβR +B6µβ

√
R,M

)
+B7

R

M
E [TA] +

[
2M + 2

R

M

]
E [X − TA] +

1

1− p2
Ibusy (M,M)

≤ max

(
2M + 2

R

M
, (B1 +B5)

√
µβR +B7

R

M

)
E [X] + (B2 +B6)β

2µ
√
R

+ Ibusy
(
B5

√
µβR +B6µβ

√
R,M

)
+

1

1− p2
Ibusy (M,M)

=

(
A1

√
µβR + A2

R

M

)
E [X] + A3β

2µ
√
R + Ibusy

(
B5

√
µβR +B6µβ

√
R,M

)
+ A4I

busy (M,M) ,

where we have taken the constant A1 ≜ max (B1 +B5, C3), the constant A2 ≜ B2 + B3, the
constant A3 ≜ B2 + B6, and the constant A4 = 1

1−p2 . Upon dividing the reward integral by the
cycle length, we obtain that

E [Q(∞)] =
E
[∫ X

0
[N(t)−R]dt

]
E [X]

≤

(
A1

√
µβR + A2

R
M

)
E [X] + A3β

2µ
√
R + Ibusy

(
B5

√
µβR +B6µβ

√
R,M

)
+ A4I

busy (M,M)

E [X]

= A1

√
µβR + A2

R

M
+
A3β

2µ
√
R + Ibusy

(
B5

√
µβR +B6µβ

√
R,M

)
+ A4I

busy (M,M)

E [X]

≤ A1

√
µβR + A2

R

M
+
A3β

2µ
√
R + Ibusy

(
B5

√
µβR +B6µβ

√
R,M

)
+ A4I

busy (M,M)

β + T busy
(
D1βµ

√
R, k −R

) ,

which is the upper bound stated in Theorem 6.1.

6.2.1 Proof of Lemma 6.1, Upper Bound on the Acc. Phase Integral
We prove this result via two applications of Lemma 4.1. To apply this decomposition lemma,
there are two broad steps. First, we must specify a starting stopping time (T0), an ending stop-
ping time (P ), a series of intervening stopping times (Ti), the process (Yt), and an counting
variable (F ). Second, we must prove that the three preconditions of the lemma hold, given these
specifications.
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First Application of Lemma 4.1, Epoch-Level.

Definition of (τj). We define the sequence of stopping times (τj : j = 0, 1, . . . , R) as

τj ≜ min {t > 0 : N(t) ≤ R− j} ,

i.e., τj is the first time there are only R − j jobs within the system. Note that, by definition,

τ0 = 0. We call the period
[
τj,min (τj+1, TA)

)
the j-th epoch, and say epoch j occurs whenever

τj < TA. We then let the random variable ne denote the number of epochs which occur in a given
renewal cycle.

Specification Step. Since we are interested in bounding E
[∫ TA

0
[N(t)−R]dt

]
, we let our

starting stopping time be T0 = 0, our ending stopping time be P = TA, our intervening stopping
times be Tj = τj , the process of interest Yt = N(t) − R and our counting variable be F = ne.
Let

p
(j)
rise ≜ Pr

(
max

t∈[τj ,min(τj+1,TA)
N(t) ≥ R + C3

√
µβR

∣∣∣∣ne ≥ j

)

be the probability that the total number of jobs N(t) exceeds R + C3

√
µβR during epoch j.

Required Claims. From here, we can apply Lemma 4.1 after showing the following claims:

Claim 6.1 (Accumulation Phase, Integral Bound). Let τj ≜ min {t ≥ 0 : N(t) ≤ R− j}, TA ≜
min {t ≥ 0 : Z(t) = R + 1}, and let ne ≜ max {i ∈ Z+ : τi < TA}. Then,

E

[∫ min(τj+1,TA)

τj

[N(t)−R]dt

∣∣∣∣∣ne ≥ j

]
≤ B1

√
µβR·E [min (τj+1, TA)− τj|ne ≥ j]+C2β

2µjp
(j)
rise,

where B1 = 3.6 and C2 =
1

2·0.98 < 0.511.

Claim 6.2 (Accumulation Phase, Continuing Probability Bound). Recall that the total number
of epochs ne ≜ max {j ∈ Z+ : τj < TA}. Then,

Pr (ne ≥ j + 1|ne ≥ j) ≤ 1− C4p
(j)
rise,

where C4 = 0.98.
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Proof of Lemma 6.1 assuming Claims 6.1 and 6.2.

Before going further, we show how to complete the proof of Lemma 6.1, assuming the two prior
claims. Applying Lemma 4.1, we find that

E
[∫ TA

0

[N(t)−R]dt
]
≤ B1

√
µβR · E [TA] + C2β

2µ

R∑
j=1

jp
(j)
rise

j−1∏
i=1

(
1− C4p

(j)
rise

)
≤ B1

√
µβR · E [TA] +

C2

C4

β2µ

[
R∑
j=1

jC4p
(j)
rise

j−1∏
i=1

(
1− C4p

(j)
rise

)]

= B1

√
µβR · E [TA] +

C2

C4

β2µ

[
R∑
j=1

j∏
i=1

(
1− C4p

(j)
rise

)]
,

where we have made use of the “expectation as a sum of tails” trick in the final line. From here,
we make use of the following claim:
Claim 6.3. Let p(j)rise ≜ Pr

(
maxt∈[τj ,min(τj+1,TA)N(t) ≥ R + C3

√
µβR

∣∣ne ≥ j
)

be the proba-
bility that the total number of jobs N(t) exceeds R + C3

√
µβR during epoch j. Then, for

j ≥ A5

√
R,

p
(j)
rise ≥ 0.99

A5√
R
.

We defer the proof of Claim 6.3 to Section A.3. Applying the claim’s result, we find that

R∑
j=1

j∏
i=1

(
1− C4p

(j)
rise

)
≤

R∑
j=1

(
1− 0.99C4A5√

R

)[j−A5

√
R]+

≤
∞∑
j=1

(
1− 0.99C4A5√

R

)[j−A5

√
R]+

= A5

√
R +

∞∑
j=0

(
1− 0.99C4A5√

R

)j
= A5

√
R +

1

0.99C4A5

√
R

Returning to our original inequality, we obtain that

E
[∫ TA

0

[N(t)−R]dt
]
≤ B1

√
µβR · E [TA] +

C2

C4

(
A5 +

1

0.99C4A5

)
β2µ

√
R.

Noting that A5 = 1 and taking B2 ≜ 1.04 > C2

C4

(
A5 +

1
0.99C4A5

)
, the proof is complete. □

And so, assuming the preconditions of Lemma 4.1 (Claim 6.1 and Claim 6.2) as well as a few
helper claims, we have proven Lemma 6.1. Thus, it now suffices to prove those preconditions.
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Proof of Claim 6.2, Upper Bound on Epoch-Continuation Probability.

Proving Claim 6.1 will be more involved; we deal with Claim 6.2 first. Note that

Pr (ne ≥ j + 1|ne ≥ j) = 1− Pr (ne = j|ne ≥ j)

= 1− Pr (TA < τj+1|ne ≥ j) .

Thus, it suffices to show that

Pr (TA < τj+1|ne ≥ j) ≥ C4p
(j)
rise.

To do this, we note a particular sequence of events which results in TA < τj+1. In particular, we
define the up-crossing time u = min

{
t > τj : N(t) ≥ R + C3

√
µβR

}
and the down-crossing

time d = min {t > u : N(t) ≤ R}, then let E1 be the event that γ < τj+1 and let E2 be the event
that TA < d. Note also that, since jobs depart one at a time, the down-crossing time d < τj+1.
Thus,

Pr (TA < τj+1|ne ≥ j) ≥ Pr (E1|ne ≥ j) Pr (E2|E1) = p
(j)
rise Pr (E2|E1) .

To bound Pr (E2|E1), we couple our original number of jobs N(t) to a coupled number of jobs
Ñ(t). We construct Ñ(t) as

Ñ(t) ≜ N(u) + ΠA ((u, t])−D [R] ((u, t]) ,

where t ∈
[
u,min (d, TA)

)
. Since Z(t) ≤ R for all t < TA, we have that Ñ(t) ≤ N(t) for all

t in our interval. Let d̃ ≜ min
{
t > u : Ñ(t) ≥ R

}
be the analogous down-crossing time in the

coupled system. Clearly, d̃ ≤ d. Thus,

Pr (TA < τj+1|E1) ≥ Pr (TA < d|E1) ≥ Pr
(
TA < d̃

∣∣∣E1) .
Finally, note that, if d̃ > u+ β, then N(t) must have stayed above R for an entire setup time,

i.e. d̃ < TA. Thus, it suffices to show that

Pr
(
d̃− u > β

)
≥ C4.

We prove this with a straightforward application of Claim A.3. In particular, since we know the
number of busy servers Z(t) ≤ R for any time before TA, we can apply the second case and see
that

Pr
(
d̃− u > β

)
≥ 1− 2Φ

(
− C3√

2

)
− 2

3
√
µβR

≥ 0.98

Taking this to be C4, we have completed our proof. □

Proof of Claim 6.1, Bound on Epoch Integral

With the probability claim proven, we return to the proving Claim 6.1, the upper bound on the
time integral over an epoch. As discussed previously, we do this via another application of
Lemma 4.1; we specify the stopping times being used, then prove that the preconditions hold.
Before the specification step, though, we must define a paired sequence of stopping times, which
we call up-crossings and down-crossings.
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𝑅 − 3 

𝑑1
(3) 𝜏4 

𝑁(𝑡)

𝜏3 𝑢1
(3)

𝑅 + 𝐶3 𝜇𝛽𝑅

𝑅

𝑢2
(3)

𝑑2
(3)

𝑅 − 4 

Figure 6.1: A depiction of the up-crossings and down-crossings defined in Section 6.2.1. In this
example, we see that the number of up-crossings in epoch 3 is n(3)

e = 2 and that, in this case,
epoch 3 ends when epoch 4 begins (i.e. at time τ4).

Definition of up-crossings and down-crossings. Let the 0-th down-crossing time in epoch j
occur at time τj , i.e.

d
(j)
0 ≜ τj.

Next, define the first up-crossing in epoch j as the first time during epoch j that the total number
of jobs N(t) exceeds R + C3

√
µβR, i.e.

u
(j)
1 ≜ min

{
t > τj : N(t) ≥ R + C3

√
µβR

}
.

From here, define i-th down-crossing in epoch j and the i+ 1-th up-crossing in epoch j as

d
(j)
i ≜ min

{
t ≥ u

(j)
i : N(t) ≤ R

}
and

u
(j)
i+1 ≜ min

{
t ≥ d

(j)
i : N(t) ≥ R + C3

√
µβR

}
,

respectively; we visualize these definitions in Figure 6.1. We call the interval
[
d
(j)
i ,min

(
u
(j)
i ,min (TA, τj+1)

))
the i-th rise, and the interval

[
u
(j)
i ,min

(
d
(j)
i ,min (TA, τj+1)

))
the i-th fall. We say the i-th up-

crossing occurs if u(j)i < min (TA, τj+1) and let

nu ≜ max
{
i ≥ 0 : u

(j)
i

}
< min (τj+1, TA)

be the random number of up-crossings which occur in epoch j. Note that, if the i-th up-crossing
occurs, then, by definition, di < τj+1; this means that the i-th fall can always be written as[
ui,min (TA, di)

)
. For readability, we fix our epoch of interest and omit the superscript j on

our up-crossings and down-crossings.
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Specification Step. With up-crossings and down-crossings defined, we are now ready to spec-
ify our application of Lemma 4.1. We let our starting stopping time be T0 = τj = d0, our
ending stopping time be P = min (TA, τj+1), our intervening sequence be (ui)

∞
i=1, our process

of interest be [N(t)−R], and our counting variable be F = ne.

Required Claims. From here, in order to apply Lemma 4.1, we must show the following three
claims:
Claim 6.4 (Within Epoch, Initial Integral Bound). One can bound the initial integral by

E

[∫ min(u1,min(TA,τj+1))

d0

[N(t)−R]dt

∣∣∣∣∣ne ≥ j

]
≤ B1

√
µβR·E [min (u1,min (TA, τj+1))− τj|ne ≥ j] ,

where B1 = 3.6.
Claim 6.5 (Within Epoch, Continuing Integral Bound). One can bound the intervening sequence
integrals by

E

[∫ min(ui+1,min(TA,τj+1))

ui

[N(t)−R]dt

∣∣∣∣∣nu ≥ i

]
≤ B1

√
µβR · E [min (ui+1,min (TA, τj+1))− ui|nu ≥ i]

+ r1β
2µj,

where r1 = 1
2

is an absolute constant independent of system parameters.

Claim 6.6 (Within Epoch, Continuing Probability Bound). Recall that p(j)rise is the probability that
the total number of jobs N(t) ever exceeds R + C3

√
µβR during epoch j, given that epoch j

occurs. Then,
Pr (nu > 0) = p

(j)
rise

and, for all i ≥ 1,
Pr (nu ≥ i+ 1|nu ≥ i) ≤ 0.02 = (1− p2),

where p2 is an absolute constant independent of system parameters.

Proof of Claim 6.1, assuming Claims 6.4, 6.5, and 6.6. Once again, before we move on to
the proofs of these claims, we show that they indeed suffice to prove our goal, Claim 6.1. By
Lemma 4.1,

E

[∫ min(TA,τj+1)

τj

[N(t)−R]dt

∣∣∣∣∣ne ≥ j

]
≤ B1

√
µβR · E [min (TA, τj+1)− τj|ne ≥ j]

+ p
(j)
riser1β

2µj
∞∑
i=1

(1− p2)
i−1

= B1

√
µβR · E [min (TA, τj+1)− τj|ne ≥ j] + p

(j)
rise
r1
p2
β2µj,

setting C2 ≜
r1
p2

, we obtain Claim 6.1. □
All that remains in our proof of Lemma 6.1 is to show the three aforementioned claims.
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Proof of Claim 6.4: Within Epoch, Initial Integral Bound. Proving this claim is quite sim-
ple. In fact, we now prove a far more general claim, that∫ min(ui,min(TA,τj+1))

di

[N(t)−R]dt ≤ C3

√
µβR · [min (TA, τj+1)− di] . (6.1)

To see this, it suffices to note that, at any point between a down-crossing and up-crossing, the
total number of jobs N(t) must be strictly less than R+ C3

√
µβR. Apply this to the 0-th down-

crossing and we have the claim. □

Proof of Claim 6.5: Within Epoch, Continuing Integral Bound. This proof is a bit more
involved. We separate the interval[
ui,min (ui+1,min (TA, τj+1))

)
into the i-th fall and the i-th rise, as discussed previously. For

the rising portion, we can simply apply (6.1). For the falling portion, we apply the integral
coupling claim, Claim A.2. In particular, note that Z(t) ≥ R − j until time τj+1 and that the
interval [ui,min (di, TA)) is equivalent to the interval [ui,min (di, ui + YR+1(ui))). Applying
Claim A.2, we find that

E

[∫ min(di,TA)

ui

[N(t)−R]dt

∣∣∣∣∣S(ui)
]
≤ 1

2
β2µj + [N(ui)−R] · YR+1(ui)

=
1

2
β2µj + C3

√
µβR · YR+1(ui).

From here, we note that YR+1(ui) ≤ min (di, TA) with probability at least

min
S(ui)

Pr (di < TA|nu ≥ i, S(ui)) ≥ p2.

Thus,

YR+1(ui) ≤
1

p2
E [min (di, TA)− ui|S(ui)] .

After combining our bound on the i-th fall with our bound on the i-th rise, then taking B1 =
C3

p2

and r1 = 1
2
, we have the claim. □

Proof of Claim 6.6: Within Epoch, Continuing Probability Bound. We now proceed to our
final claim, a statement concerning the probability Pr (nu > 0) and the conditional continuation
probability Pr (nu ≥ i+ 1|nu ≥ i).

To begin, we first note that, since the first up-crossing occurs onceN(t) exceedsR+C3

√
µβR

during epoch j, one has

p
(j)
rise ≜ Pr (u1 < min (TA, τj+1)) = Pr (nu > 0) .

Next, we note that there can only be another up-crossing after the i-th up-crossing in an epoch
if the i-th down-crossing before time TA, i.e.

Pr (nu ≥ i+ 1|nu ≥ i) ≤ Pr (di < TA|nu ≥ i) .
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To bound this down-crossing probability, we condition on the filtration at time ui and make a
worst-case bound based on the state at that time. First, we show that the event {di < TA} =
{di < ui + YR+1(ui)}, given that the i-th up-crossing has occurred. To see this, note that at time
ui, if another down-crossing doesn’t occur before the (R + 1)-th server turns on, we know that
TA = ui+YR+1(ui). Likewise, if another down-crossing does occur before the (R+1)-th server
turns on, then

TA > di + β > ui + β > ui + YR+1(ui).

Thus, the event {di < TA} = {di < ui + YR+1(ui)}, given that the i-th up-crossing has occurred.
To bound this probability, we appeal to Claim A.2. Since we are in the first part of our

renewal cycle, we know that the (R + 1)-th server has not yet turned on, i.e. that Z(t) ≤ R. If
we let γ = di − ui, then

γ = min {t > 0 : N(t+ ui) ≤ R} ,

and thus
Pr (di < ui + Yui |nu ≥ i) = Pr (γ < Yui |nu ≥ i) .

Applying the second case of Claim A.2 and noting that N(ui)−R = C3

√
µβR, we obtain that

Pr (γ < Yui |nu ≥ i) ≤ 2Φ

(
− C3√

2

)
+

1

100
< 0.02

Taking this final quantity to be (1− p2), we have the claim. □

6.2.2 Proof of Lemma 6.2, the Upper Bound on Draining Phase Integral.

To prove this lemma, we again make use of Lemma 4.1. We proceed through the usual two-step
process, first defining the stopping time sequence we will analyze over, then proving the three
preconditions of the lemma.

Definition of the upcrossings υ(up)
i and downcrossings υ(down)

i . Recall that the draining phase
begins at time TA. Let MB ≜ min

(
k −R,max

( √
R

D1
√
β
, 1
))

be a specially-set analysis thresh-

old. Let the stopping time ζ(d)1 ≜ min {t ≥ TA : N(t) < R +MB} be the first time the number
of jobs N(t) drops below R +MB, and recursively define

ζ
(u)
i ≜ min

{
t ≥ ζ

(d)
i : N(t) ≥ R +MB

}
and

ζ
(d)
i+1 ≜ min

{
t ≥ ζ

(u)
i : N(t) < R +MB

}
.

Application of Lemma 4.1. Applying Lemma 4.1, we take our initial stopping time to be TA,
our final stopping time to be X , our intervening stopping times to be ζ(d)i , our process of interest
to be [N(t)−R] and our counting index to be nb.
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𝑁(𝑡)

𝑇𝐴 𝑣1

𝑅 +𝑀

𝑣4 𝑋

𝑅 + 1

𝑁 𝑇𝐴

𝑣2𝑣1 + 𝛽 𝑣3

Setup Time, 𝛽

Figure 6.2: A depiction of the separated visits defined in Section 6.2.2. In this example, we find
that the number of visits is nv = 4. Notice that the second separated visit only happens when
both a setup time β has passed and the number of jobs N(t) is currently ≤ R+M . For the third
visit, these events happen simultaneously.

Required Claims. From here, all we need to show is the usual three claims: a bound on the
initial integral

E

[∫ ζ
(d)
1

TA

[N(t)−R] dt

∣∣∣∣∣FTA

]
≤ [N(TA)−R]·

[
1

µ
+ β +

1

2µMB

+
R

µM2
B

]
+[N(TA)−R]2

1

2µMB

+
Rβ

M2
B

,

(6.2)
a bound on the continuing integral

E

[∫ ζ
(d)
i+1[N(t)−R]dt

ζ
(d)
i

∣∣∣∣∣Fζ
(d)
i

]
≤ 1

µ
+ β +

1

µMB

[
1 + b1

√
βR +

R

MB

]
, (6.3)

and
Pr (nb ≥ i+ 1|nb ≥ i) ≤ 1

MB

. (6.4)

Proof of Lemma 6.2 assuming (6.2),(6.3),(6.4). From these, we have

E

[∫ ζ
(d)
1

TA

[N(t)−R] dt

]
≤ E [N(TA)−R] ·

[
1

µ
+ β +

1

2µMB

+
R

µM2
B

]
+ E

[
(N(TA)−R)2

] 1

2µMB

+
Rβ

M2
B

,

and also that

E

[∫ X

ζ
(d)
1

[N(t)−R] dt

]
≤M2

B

1

µ

[
b1
√
β√
R

+
6

R
+

b2√
R

]
+
MB

2µ
+MBβ +

1

µ

[
R

MB

+
3

2
MB +

1

2

]
+D1

√
µRβ.

To finish off the proof, we use the following claim, whose proof we defer until Section A.6:
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Claim 6.7 (Upper Bound on E [N(TA)]). Recall that TA ≜ min {t > 0 : Z(t) = R + 1}. Then,

E [N(TA)−R] ≤ F1µβ
√
R

(
1 +

F2√
µβ

)
and

E
[
(N(TA)−R)2

]
≤ F 2

1 (µβ)
2R

(
1 +

F2√
µβ

)2

+ 2µβR,

where F1 = 2.12 and F2 = 3.645.
Continuing our proof of Lemma 6.2, we apply Claim 6.7 to find that

E

[∫ ζ
(d)
1

TA

[N(t)−R] dt

]
≤ E [N(TA)−R] ·

[
1

µ
+ β +

1

2µMB

+
R

µM2
B

]
+ E

[
(N(TA)−R)2

] 1

2µMB

+
Rβ

M2
B

≤ F1µβ
√
R

(
1 +

F2√
µβ

)(
1 +

3

2µβ

)
As such, to complete our proof it suffices to show (6.2),(6.3), and (6.4).

Precursor: The “Wait-Then-Busy” Period Idea. To prove these inequalities, we make use
of the following useful claim.
Claim 6.8 (Wait-Busy Period Bound). Let τ be some stopping time. Let the next down-crossing
dgen, defined as

dgen ≜ min {t ≥ 0 : N(t+ τ) ≤ R + h} ,

be the length of time until the number of jobs N(t) ≤ R + h, where h is some positive integer
which is smaller than k − R. Suppose that, at time τ , we know that Z(t + τ) ≥ R for any
t ∈ [0, dgen]. Let ˜dgen be the relative downcrossing time in a coupled system with exactly R busy
servers. Then we have the following bound for the time integral of N(t)−R from τ to τ + dgen:

E
[∫ τ+dgen

τ

[N(t)−R]dt
∣∣∣∣Fτ

]
≤ [N(τ)− (R + h)] ·

[
1

µ
+ β +

1

2µh
+

R

µh2

]
+
(
[N(τ)− (R + h)]+

)2 1

2µh

+ E
[
min

(
β, ˜dgen

)]
·
[
h+

R

h2

]
We defer the proof of Claim 6.8 until Section 6.2.2. For now, we give a brief intuition for how

the bound is derived and how we use it in our proof. Essentially, we can consider performing the
following procedure at time τ : First, watch the system for β time. If the number of jobs ever dips
below R+ h during this watching period, we can end our integral immediately. If the number of
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jobs N(t) never dips below R + h during this watching period, then we know for sure that we
have at least R + h servers on at time τ + β, since the number of busy server Z(t) satisfies

Z(t) = min

(
k, min

s∈[t−β,t]
N(s)

)
.

Moreover, by the same justification, those servers will stay on until the number of jobs N(t) dips
below R + h; in other words, they will stay on until time dgen. The proof of the claim follows
along essentially the same lines, formalizing things and performing computations using coupling
and martingales.

Proof of (6.2): Bound on Integral until First Visit.

To prove (6.2), we simply apply Claim 6.8 with starting time τ = TA and threshold h = MB.
From there, we note N(t)− (R+ h) ≤ N(t)−R and that E

[
min

(
β, ζ

(d)
1

)]
≤ β; this gives the

claim directly.

Proof of (6.3): Bound on Integral Between Visits.

To prove (6.3), we break the integral into two parts; from the downcrossing ζ(d)i to the upcrossing
ζ
(u)
i and from the upcrossing ζ(u)i to the downcrossing ζ(d)i+1.

First, we note that∫ min
(
ζ
(u)
i ,X

)
ζ
(d)
i

[N(t)−R] dt ≤
[
min

(
ζ
(u)
i , X

)
− ζ

(d)
i

]
·MB, (6.5)

since ζ(u)i is the next time N(t) ≥ R+MB. To bound E
[
min

(
ζ
(u)
i , X

)
− ζ

(d)
i

∣∣∣F
ζ
(d)
i

]
, we couple

the system to an M /M /∞ at time ζ(d)i , and note that the coupled up-crossing time

˜T(R+MB−1)→(R+MB) + ζ
(d)
i ≥ ζ

(u)
i ≥ min

(
ζ
(u)
i , X

)
.

From standard results on the M /M /∞ (reproduced in Section 5.3.7 for completeness), we have
that

From ζ
(u)
i onwards, we use the “wait-busy” bound. Applying Claim 6.8 with h = MB, we

obtain

E

[∫ ζ
(d)
i+1

ζ
(u)
i

[N(t)−R] dt

∣∣∣∣∣Fζ
(u)
i

]
≤
[
1

µ
+ β +

1

2µMB

+
R

µM2
B

]
+

1

2µMB

+ E
[
min

(
β, ζ

(d)
i+1 − ζ

(u)
i

)∣∣∣F
ζ
(u)
i

]
·
[
MB +

R

MB

]
.

To bound the conditional expectation of E
[
min

(
β, ζ

(d)
i+1 − ζ

(u)
i

)∣∣∣F
ζ
(u)
i

]
, it suffices to bound

E
[
min

(
˜dgen, β

)]
, for the coupled relative down-crossing time ˜dgen. But note that ˜dgen is ex-

actly the busy period length of a critically-loaded M/M/1 queue with arrival rate and depar-
ture rate kλ. From standard results (reproduced in Claim A.9 for completeness), we have
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E
[
min

(
˜dgen, β

)]
≤ b1

√
β√
R

+ 6
R

and thus that

E

[∫ ζ
(d)
i+1

ζ
(u)
i

[N(t)−R] dt

∣∣∣∣∣Fζ
(u)
i

]
≤ 1

µ
+ β +

1

µMB

[
1 + b1

√
βR +

R

MB

]
+MB ·

[
b1
√
β√
R

+
6

R

]
.

Proof of (6.4): Bound on the probability of another visit.

To see (6.4), we first note that, if there is another upcrossing, then there must be another down-
crossing. As such, it suffices to upper bound Pr

(
ζ
(u)
i < X

∣∣∣ζ(d)i

)
. To do this, we note that the

number of busy servers Z(t) ≥ R. From Claim A.1, it thus suffices to bound the corresponding
probability in the coupled system with exactly R busy servers. But this is simply the proba-
bility that, in a simple random walk started at W (0) = MB − 1, the walk process W (t) hits
W (t) =MB before it hits W (t) = 0. Classically, this probability is 1

MB
. □

6.2.3 Proof of Lemma 6.3: Lower Bound on the Cycle Length.

Preliminaries. The proof of this lemma is much simpler than the others. Before describing our
strategy, we first state some preliminaries. Recall the definition of the start of the j-th epoch, τj:

τj ≜ min {t ≥ 0 : N(t) ≤ R− j} .

We call the period
[
τj,min (τj+1, TA)

)
the j-th epoch, and say epoch j occurs if τj < TA. Say

an epoch j is long if it lasts longer than a setup time β; note that such an epoch must exist, since
servers can only turn on during long epochs, and a server must turn on before the accumulation
phase is over. Let L be the index of the first long epoch, i.e.

L ≜ min {j ∈ {0, 1, 2, . . . , R} : min (τj+1, TA)− τj > β} .

Note that, although the random time τL is not a stopping time (we do not know how long an
epoch will last when the epoch starts), the first moment we can identify epoch L, the random
time τL + β, is a stopping time. Moreover, we know that τL + β < TA. From here, one sees that

E [X] = E [τL + β] + E [X − (τL + β)]

≥ β + E [X − (τL + β)] .

To complete the proof, it suffices to show via a simple coupling argument that

E [X − (τL + β)] ≥ T busy (E [N (τL + β)−R] , k −R) . (6.6)

From there, we can apply (5.6), the bound on E [N(τL + β)] in terms E [L], and (5.3), the bound
on E [L], to obtain Lemma 6.3.
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Proof of (6.6): Lower Bound on the Cycle Length. To show (6.6), we make a simple coupling
argument. Consider a coupled system with the same arrival process but the maximum possible
departure rate, kµ. In other words, define for all time t ≥ τL + β

Ñ(t) ≜ N (τL + β) + A ((τL + β, t])−D [k] ((τL + β, t]) .

Since Z(t) ≤ k, it follows that N(t) ≤ Ñ(t) for all t ≥ τL + β. Naturally then, the coupled
down-crossing time X̃ ≜ min

{
t ≥ τL + β : Ñ(t) ≤ R

}
must be smaller than the end of our

renewal cycle, since the cycle ends once a similar down-crossing occurs after the (R + 1)-th
server has turned on, i.e.

X ≜ min
{
t > 0 : Z(t−) = R + 1, Z(t) = R

}
= min {t > TA : N(t) ≤ R} .

Thus we have

E [X − (τL + β)|FτL+β] ≥ E
[
X̃ − (τL + β)

∣∣∣FτL+β

]
= T busy ([N (τL + β)−R]+ , k −R

)
≥ T busy (N (τL + β)−R, k −R) .

Since the length of a busy period scales linearly with the number of jobs which start it, we have
(6.6) via linearity of expectation. □

6.3 The Upper Bound: Review of Findings
In this chapter, we proved an upper bound on the average waiting time in the M/M/k/Setup-
Deterministic. We proved this bound via a number of applications of the MIST Lemma, Lemma 4.1.
In fact, to bound the accumulation phase integral, we needed to use the MIST Lemma in a
nested way: First, we used it to break the accumulation phase into epochs, and then we used
it to break each epoch into “rises” and ”falls,” periods of time punctuated by up-crossings and
down-crossings. Compared to the lower bound of Chapter 5, the upper bound proven here truly
highlights the utility of the MIST method.
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Chapter 7

The Approximation

In Chapter 7, we present our approximation for the average waiting time in the M/M/k/Setup-
Deterministic. We begin by discussing why we need such an approximation, then state the ap-
proximation, then give a short justification for its form.

7.1 Why we need an approximation

Despite our success in analyzing the M/M/k/Setup-Deterministic, our upper and lower bounds
alone are not suitable for practical use in predicting the value of the average waiting time E [TQ].

There are two reasons for this. First, our bounds are off by constant factors. Although we can
prove that the true value of the average waiting time lies within our two bounds, it’s not a priori
obvious whether the true value of E [TQ] will get closer to one bound or the other as we vary
the system parameters. Although the true value does not seem to ever get closer to a particular
bound (and so we could conceivably just scale our lower bound to serve as a predictor), it would
be better to have a more concrete theoretical justification for our prediction.

The second reason why our bounds are unsuitable for practical use is their complexity. Al-
though both the upper and lower bounds are far more straightforward to compute than, for exam-
ple, the average waiting time in the M/M/k/Setup-Exponential, both bounds incorporate a large
number of terms and are thus somewhat difficult to reason about on the fly. As such, it would be
better to have a predictor which incorporates only a few, easy-to-remember terms.

7.2 The approximation

To this end, we introduce the following approximation; the justification for the approximation
follows. An empirical evaluation of this approximation is left to Section 8.2; it is extremely
accurate.
Approximation 1 (Approximation to the average queue length.). In the M/M/k/Setup-Deterministic,
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for offered loads R ≜ kρ > 2,

E [Q(∞)] ≈ Qapx ≜

1
2
β2Capx

√
R +

βCapx
√
R

µk(1−ρ)

[
βCapx

√
R+1

2
+ 1

1−ρ

]
β +

βCapx
√
R

µk(1−ρ)

, (7.1)

where Capx ≜
√

π
2
.

7.3 Justification
We arrive at this bound via a straightforward combination of our results from Chapters 5 and 6,
along with a few modifications. We follow our renewal-reward analysis, separately approximat-
ing the expected time integral over our renewal cycle and the expected length of that renewal
cycle, the numerator and denominator of 7.1, respectively.

7.3.1 Justification of Numerator
We first approximate the numerator of our expression, the expected time integral over our chosen
renewal cycle. We begin by recalling the lower bound on the time integral, Lemma 5.1, which
states

E
[∫ X

0

Q(t)dt
]
≥ L1β

2
√
R + Ibusy

([
L1β

√
R− (k −R)

]+
, k −R

)
,

where

Ibusy (x, z) ≜
x

µz

[
x+ 1

2
+

1

1− kλ
kλ+µz

]
represents the time integral of the queue length a certain M/M/1 queue over a busy period started
by x jobs.

To obtain the appropriate constant Capx, we next note that, although our theorem states L1 as
an absolute constant, as the setup time β and the offered load R grow, the best possible constant
will become Capx =

√
π
2
. Under the hood, this convergence stems from the fact that

R∑
j=1

j∏
i=1

(
1− j

R

)
≈
∫ ∞

0

e
−j2
2R dj =

1

2

√
2πR;

see the proof of Lemma 5.1 for more details.
To complete the bound, it suffices to remove the subtraction of (k − R) in the busy period

term, which we anticipate is an artifact of our analysis. Removing it, we obtain the desired
approximation

E
[∫ X

0

Q(t)dt
]
≈ 1

2
β2Capx

√
R +

βCapx
√
R

µk(1− ρ)

[
βCapx

√
R + 1

2
+

1

1− ρ

]
. (7.2)
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7.3.2 Justification of Denominator
We next approximate the denominator of our expression, the expected length of our chosen
renewal cycle. To do so, we again make use of the lower bound on the expected cycle length
E [X] from Lemma 6.3, which states

E [X] ≥ β +
L1β

√
R

µk(1− ρ)
.

By making the same convergence argument for L1, i.e. that L1 → Capx for large setup times β
and large offered loads R, we obtain the denominator, completing both parts of our bound.
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Chapter 8

Evaluation

In this chapter, we review and discuss the practical takeaways of this thesis. In the previous
chapters, we derived upper and lower bounds on the average waiting time in the M/M/k/Setup-
Deterministic, and, from these upper and lower bounds, we constructed a new approximation
for the average waiting time. Here, we highlight the utility of our results by investigating three
practical questions concerning the M/M/k/Setup:

1. Does setup distribution matter?

2. How does our approximation’s accuracy change as we vary our system parameters?

3. How do our results affect provisioning?

8.1 Does Setup Distribution Matter?
The choice of setup distribution in the study of the M/M/k/Setup makes a tremendous difference
in its queueing behavior. In particular, when setup times are Deterministic, modeling them as
Exponential, or, worse yet, not modeling them at all, can lead to a dramatic underestimation of
the delay caused by setup time. We illustrate this point in Figure 8.1, where we vary the number
of servers k in the system, while holding fixed the load ρ and the setup time β.

We make two observations. First, we observe that there is an almost unfathomable difference
in the average waiting time behavior for a no-setup system as compared to either an Exponential
or a Deterministic setup system. Given that this is a log-log plot, we see that the average waiting
time appears to decay polynomially in the number of servers k, while we know from Erlang that
the average waiting time in a no-setup M/M/k queue decays exponentially as k grows.

Second, we observe that the Deterministic setup system seems to have a substantially dif-
ferent scaling with the number of servers k when compared to the Exponential setup system.
Returning to our log-log plot Figure 8.1, while the average waiting time in the M/M/k/Setup-
Deterministic seems to decay exactly as k−

1
2 , the waiting time behavior of the M/M/k/Setup-

Exponential does not seem to decay with any obvious trend. Moreover, the average waiting time
in the Exponential model decays much more quickly than in the Deterministic model.

These experimental observations provide an experimental confirmation of exactly what we
asserted in the beginning of this thesis: that, when modeling multiserver systems, setup time, as
well as its distribution, cannot be ignored.
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Figure 8.1: Simulation results for the M/M/k/Setup-Deterministic, M/M/k/Setup-Exponential,
M/M/k (no setup), with µ = 1, setup time β = 1000, and load kept at a constant ρ = 0.5.
Note the high separation between the Exponential setup and Deterministic setup models at large
scales, as well as the large separation between the models with and without setup.

8.2 How Accurate Is Our Approximation?
We have found our approximation (1) to be extremely accurate across a wide range of system
parameters, so long as the offered load R > 2. In our analysis, we assume that the offered load
R ≫

√
R and often make considerable use of this fact. In that sense, it is a testament to the

strength of our approach that our resulting approximation remains accurate all the way up to an
offered load of R = 2. Offered loads smaller than this are of limited interest in practical settings.
That said, when the offered load is that small, we anticipate that the multiserver system exhibits
a “single-server” bottleneck effect; preliminary investigations seem to confirm this.

8.3 How Do Our Results Change Provisioning?
A common, but sometimes complex problem which arises in many systems is that of designing
the system such that the average waiting time of a customer is below some target waiting time.
Historically, we have studied this provisioning problem a great deal [5, 7, 16, 21, 26], and under-
stand the problem well for systems without setup times, e.g. there’s a straightforward formula
for the average waiting time in the M/M/k without setup.

Unfortunately, our understanding of this problem is still quite poor for many modern systems,
since their average waiting times are affected by setup times. In particular, many modern systems
dynamically control the number of servers that they keep on, periodically turning servers off in
order to save energy. As mentioned previously, previous results on understanding the relation-
ship between setup times and the average waiting time leave much to be desired. Our new results
expand on the state-of-the-art Exponential model in two important ways: 1) obtaining the pre-
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Figure 8.2: An example highlighting the excellent accuracy of our simple approximation (1) to
the average waiting time in the M/M/k/Setup-Deterministic. For each of these 9 plots, we plot
the behavior of the average waiting time as one varies the load ρ from 0 to 1, holding fixed the
total number of servers k as well as the setup time β. In each row, we hold the number of servers
k constant while testing increasing values of the setup times β. In each column, we hold the
setup time β constant while increasing the number of servers. We also include, as a reference, a
dotted line illustrating the point at which the offered load R ≜ kρ = 2.
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Figure 8.3: An example highlighting the differences between M/M/k/Setup-Deterministic and
M/M/k/Setup-Exponential, varying the number of servers k while keeping the mean service time
1
µ
= 1 ms, the mean setup time β = 1000 ms, and the load ρ = 0.5 fixed. Note the ability of our

approximation to accurately predict the behavior of the M/M/k/Setup-Deterministic. To achieve
a target waiting time of 20 ms, our approximation accurately predicts it will take k ≈ 2000, while
the Exponential model only predicts that a k of around 50 is needed.

dicted average waiting time is much easier computationally, and 2) the quality of the prediction
is much better.

Easier predictions. Compared to the Exponential model, our new Deterministic approxima-
tion greatly simplifies the design process. In particular, when using the Exponential model, one
must solve a system of O(k2) quadratic equations to find the average waiting time E [TQ]. Two
practical issues arise from this fact. First, the equations change depending on the number of
servers k, meaning that the computation must be repeated every time one wishes to test a new
number of servers. Second, the opacity of the process makes it difficult to draw intuition about
how the average waiting time is changed when one alters the system parameters. In contrast, our
approximation is a relatively simple function of the relevant parameters. The simplicity of our
approximation has, likewise, two benefits:1) computing the average waiting time becomes easy,
and 2) the form of our approximation makes it clear how and why the system’s behavior changes
in response to certain parameters.

Higher quality predictions. Moreover, when compared to the predictions of the Exponential
model, the predictions we obtain using our Deterministic approximation are of a much higher
quality. This difference in quality is perhaps best illustrated by looking at a simple example. In
Figure 8.3, we compare the prediction from the Exponential model to the prediction from our
approximation, plotting how the predicted average waiting time changes as one increases the
number of servers k while keeping fixed the load ρ = 0.5, the average setup time β = 1000 ms,
and the average service time 1

µ
= 1 ms. Our goal is to determine how large the number of servers
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k needs to be before we reach our target waiting time Ttarget = 20 ms. In both models, the average
waiting time decreases as the system grows larger and larger. However, the Exponential model
predicts that average waiting time will be small enough once k = 50. On the other hand, as
captured by our approximation, the Deterministic setup system will only reach the target waiting
time once the number of servers k ≈ 2000, a full 40 times larger than what the Exponential
system predicts! For even a modestly-large number of servers, the Exponential system predicts
waiting times which are orders of magnitude smaller than what really occur.
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Chapter 9

Conclusion

In this chapter, we summarize the thesis, discuss some broader impacts of this thesis, and state
some related open problems.

9.1 Summary and Takeaways

In this thesis, we studied the effect of setup times on the queueing behavior of multiserver sys-
tems. In particular, we studied how the average waiting time E [TQ] in the M/M/k/Setup depends
on the system parameters like the number of servers k, the average setup time β, and the load
ρ. In Chapter 1, we first noted that the fundamental difficulty in analyzing setup in multiserver
systems was the fact that multiple servers can be in setup at the same time. We then that all
prior theoretical work made that simplifying assumption that setup times were distributed i.i.d.
Exponential, even though, practically-speaking, setup times are much closer to Deterministic;
see Chapter 2 for more details. Furthermore, we found in simulation that this distributional as-
sumption has a large impact on the behavior of the system: systems with Deterministic setup
times have very different behavior from systems with Exponential setup times.

Accordingly, we narrowed our focus to studying the average waiting time in the M/M/k/Setup-
Deterministic (defined in Chapter 3), deriving the first-ever lower and upper bounds on this quan-
tity in Chapters 5 and 6, respectively. Next, in Chapter 7, we described how to take the tightest
parts of our bounds and combine them to make an approximation which is extremely accurate.
Finally, in Chapter 8, we reviewed and discussed the practical takeaways of our work:

• that the average waiting time in the M/M/k/Setup-Exponential is drastically smaller than
the average waiting time in the corresponding M/M/k/Setup-Deterministic (Section 8.1);

• that our approximation is highly accurate in predicting the average waiting time in the
M/M/k/Setup-Deterministic (Section 8.2);

• and that the simplicity and accuracy of our approximation radically simplifies capacity
provisioning for dynamically-scaled systems (Section 8.3).
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9.2 Broader Impacts

This thesis has the potential to impact a large number of different fields, since setup times arise
in so many different settings.

9.2.1 Computer Science

In computer science, setup times arise most directly when performing dynamic-scaling in the
cloud. There, booting up another container (or virtual machine) might take a few seconds while
the actual runtime of a specific task might only take a few milliseconds. Because we do not fully
understand how to manage systems with setup times, these servers could be burning 5 percent
more energy than necessary. A priori that might not sound like much, but consider the following:
energy waste does not solely affect these companies’ profitability, but also has affects our climate
as well. Given that one percent of all power globally is spent running these datacenters, if we
can save two or three percent more energy in their operations, that would be a significant gain
for the entire world.

9.2.2 Operations/Management

From an operations/management perspective, the effect of setup times is well-illustrated in em-
ployee turnover. When hiring, it might take months to fully onboard a new team member,
whereas a typical task might be completed in a day; on the other hand, many employees can
be laid off more-or-less instantly. The way in which a firm goes about hiring people, migrating
them between different teams, and deciding to lay them off is a great example of the human side
of dynamic scaling. Effective management is timelessly relevant, and a setup-time-oriented per-
spective could provide insights and tools in the same vein as the Pollaczek–Khinchine formula
or the Erlang-C model.

9.2.3 Healthcare

Setup times also occur in the medical setting, e.g. when managing on-call doctors. Because
patient need (i.e. service demand) is unpredictable, some doctors are often kept “on-call” for
up to 36 hours at a time. While on-call, although a physician may not always have work to do,
if their service is requested, then they are expected to respond within, say, 30 minutes (which
includes travel time to the hospital, if required). For context, most requests can be handled in a
very short amount of time, e.g. under a minute. Because these physicians must stay ready-to-
respond for multiple days, the current on-call system can lead to extreme sleep deprivation and,
accordingly, a poor standard of care for patients. Along the lines of this thesis, further research
on dynamically allocating physicians might someday lead us to a new, more sustainable on-call
system, with both better care quality and better physician well-being.
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9.3 Open Problems

9.3.1 Standby States
Within this thesis, we assume that servers have two persistent states: on and off ; for some
systems, this assumption turns out to be wrong. In reality, many servers possess intermediate
standby states. A server on standby takes a shorter amount of time to get ready than a server
that is completely off, but it also burns more energy. Since the setup process itself takes energy,
by using these standby states cleverly, we might be able to both improve performance and im-
prove energy efficiency within these systems. Given this, one might ask: “When should we put
a server on standby versus turning it completely off? What are the benefits of using the
standby state?”

9.3.2 Analyzing Tail Performance in the M/M/k/Setup.
Another important open problem lies in analyzing tail performance in the M/M/k/Setup. For
context, when customers purchase cloud hosting, an ubiquitous component in their purchase
agreements is some kind of “tail/deadline constraint” on their job delay. For example, the agree-
ment will stipulate that “95% of submitted jobs must complete service within one second of their
arrival,” with some sort of financial penalty if this constraint is not honored.

Tail constraints in queueing pose a number of technical challenges. In even the single-server
case, we do not yet understand how to schedule jobs to optimally meet these constraints. In the
multiserver case, though, we have another perspective from which we can analyze the problem:
that of dynamic-scaling. Instead of thinking about how to schedule these tail-constrained jobs,
we can instead think about how we should dynamically-scale our system so that we guarantee
that our tail constraints are met. This scaling perspective provides a natural way of thinking
about the different costs involved. With enough servers, we should be able to ensure that our tail-
constraint is met. As such, we can now ask: “How and when should a system use additional
servers to satisfy a given tail constraint?”

The above question is challenging, and worth considering even in systems without setup
times. However, as we have made clear throughout this thesis, setup times often have an enor-
mous impact on the queueing behavior of a dynamically-scaled system. Although there exists
extensive study of the performance of dynamic staffing [6, 26], especially in the time-varying
arrival rate case [7, 21], much of that work has yet to be extended to the setup time case. As
such, we should also ask a more fundamental question: “How does setup time impact the
distribution of waiting time in the M/M/k/Setup?”
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Appendix A

Miscellaneous Claims

In this Appendix, we prove some miscellaneous claims.

A.1 Coupling Claims

A.1.1 Three Coupling Claims
We now describe three useful claims applied throughout the proof. The first, we will state and
prove immediately. The latter two, we prove later, in Section A.1.2.
Claim A.1. Suppose that we have two processes N1 and N2 with an initial relation

N1(a) ≤ N2(a),

where the behavior of each process is governed, for all times s from a up to some stopping time
τ , by the equation

Nj(s) ≜ Nj(a) + ΠA ((a, s])−D [Zj(x)] ((a, s]) , for j ∈ {1, 2}.
Furthermore, suppose that the function Z1(x) dominates the function Z2(x) on the interval [a, τ ],
i.e.

Z1(s) ≥ Z2(s), ∀s ∈ [a, τ ].

Then, for all s ∈ [a, τ ],
N1(s) ≤ N2(s).

Proof. Proof. It suffices to show that N2(s) − N1(s) ≥ 0, for all s ∈ [a, τ ]. Applying the
definitions of N1 and N2, we find

N2(s)−N1(s) = N2(a)−N1(a) + [D [Z1(x)] ((a, s])−D [Z2(x)] ((a, s])]

≥ [D [Z1(x)] ((a, s])−D [Z2(x)] ((a, s])]

=
k∑
i=1

∫ s

a

1 {Z1(x) ≥ i} dΠi(x)−
k∑
i=1

∫ s

a

1 {Z2(x) ≥ i} dΠi(x)

=
k∑
i=1

∫ s

a

[
1 {Z1(x) ≥ i} − 1 {Z2(x) ≥ i}

]
dΠi(x).
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Since Z1(x) ≥ Z2(x) for all x ∈ [a, s], the integrand
[
1 {Z1(x) ≥ i}− 1 {Z2(x) ≥ i}

]
must be

non-negative; the claim follows. □

This claim leads nicely into a couple more claims. The first claim, Claim A.2, uses a coupling
argument to bound the expected integral of N(t) from some arbitrary time τ until N(t) drops
below some pre-defined threshold h, provided that one has a lower bound on the number of busy
servers Z(t) over that period. The second claim, Claim A.3, uses a related argument to bound
the probability that N(t) drops below some threshold h within some amount of time ℓ, given that
one has bounds on Z(t) over the relevant period.
Claim A.2 (Coupling Bound: Time Integral). Let τ be some stopping time. Let the next down-
crossing time dgen, defined as

dgen ≜ min {t ≥ 0 : N(t+ τ) ≤ h} ,

be the length of time that passes until the number of jobs N(t) is less than some fixed threshold
h. Suppose that, at time τ , we have a lower bound on the number of busy servers over a period,
i.e.

Z(t) ≥ R− j,

for all t ∈ [τ, τ +min (ℓ, dgen)] and for some non-negative j. Then we have the following bound
on the integral over this time period:

E

[∫ τ+min(dgen,ℓ)

τ

[N(t)− h] dt

∣∣∣∣∣Fτ

]
≤ ℓ · [N(τ)− h]+ +

1

2
µjℓ2.

Claim A.3 (Coupling Bound: Probability). Let τ be some stopping time. Let the next down-
crossing time dgen, defined as

dgen ≜ min {t ≥ 0 : N(t+ τ) ≤ h} ,

be the length of time until the number of jobs N(t) is less than some fixed threshold h. We
consider two cases.

In the first case, suppose that we have a lower bound on the number of busy servers Z(t)
over some length ℓ interval starting at time τ , i.e.

Z(t) ≥ R− j,

for all t ∈ [τ, τ +min (ℓ, dgen)] and for some non-negative j. Then, we can bound the threshold-
crossing probability by

Pr (dgen < ℓ|Fτ ) ≥ 2Φ

(
−

[
N(τ)− h+ µjℓ√

ℓ(2kλ− µj)

])
− 2

3
√
ℓ(2kλ− µj)

.

In particular, if N(τ)− h = c
√
µβR, then

Pr (dgen < ℓ|Fτ ) ≥ 2Φ

(
− c1√

2

)
− 1

100
.
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In the second case, suppose that we instead have an upper bound on Z(t) ≤ R during this
interval instead. Then,

Pr (dgen < ℓ|Fτ ) ≤ 2Φ

(
−
[
N(τ)− h√

2ℓkλ

])
− 2

3
√
2kλℓ

.

As before, if N(τ)− h = c
√
µβR, then

Pr (dgen < ℓ|Fτ ) ≤ 2Φ

(
− c√

2

)
+

1

100
.

A.1.2 Proof of Claim A.2: Coupled Time Integral Bound

Claim A.2 (Coupling Bound: Time Integral). Let τ be some stopping time. Let the next down-
crossing time dgen, defined as

dgen ≜ min {t ≥ 0 : N(t+ τ) ≤ h} ,

be the length of time that passes until the number of jobs N(t) is less than some fixed threshold
h. Suppose that, at time τ , we have a lower bound on the number of busy servers over a period,
i.e.

Z(t) ≥ R− j,

for all t ∈ [τ, τ +min (ℓ, dgen)] and for some non-negative j. Then we have the following bound
on the integral over this time period:

E

[∫ τ+min(dgen,ℓ)

τ

[N(t)− h] dt

∣∣∣∣∣Fτ

]
≤ ℓ · [N(τ)− h]+ +

1

2
µjℓ2.

Proof. We prove this claim in three parts. First, we construct a coupled process Ñ(t) ≥ N(t) on
the interval of interest. Then, we give an upper bound on E

[∫ τ+min(dgen,ℓ)

τ
Ñ(t)dt

∣∣∣Fτ

]
. Define

Ñ(t) as

Ñ(t) ≜ N(τ) + A(τ, t)−D [R− j] ((τ, t)) .

Then, by Claim A.1, we have that

Ñ(t) ≥ N(t).

on the interval of interest. To develop the integral, we first move the minimum from the bounds
of integration into the integrand. In particular, we note that the quantity N(dgen) − h = 0, and
thus, for any t > τ + dgen, the quantity N(min (τ + dgen, t))− h = 0. On the other hand, for any
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t < τ + dgen, the quantity N (min (τ + dgen, t)) = N (t). It follows that∫ τ+min(dgen,ℓ)

τ

[N(t)− h] dt =
∫ τ+min(dgen,ℓ)

τ

[N(min (t, τ + dgen))− h] dt

=

∫ τ+min(dgen,ℓ)

τ

[N(min (t, τ + dgen))− h] dt

+

∫ τ+ℓ

τ+min(dgen,ℓ)

[N(min (t, τ + dgen))− h] dt

=

∫ τ+ℓ

τ

[N(min (t, τ + dgen))− h] dt

≤
∫ τ+ℓ

τ

[
Ñ(min (t, τ + dgen))− h

]
dt.

Defining ˜dgen ≜ min
{
t > 0 : Ñ(τ + t) ≤ h

}
, since Ñ(t) ≥ N(t), we know both that ˜dgen ≥

dgen and that, for any t ∈ [τ + dgen, τ + ˜dgen],

Ñ(t)− h ≥ 0.

Moreover, the process V (t) defined as

V (t) ≜ Ñ(t)− µjt

is a martingale. Thus, we have∫ τ+ℓ

τ

[
Ñ(min (t, τ + dgen))− h

]
dt ≤

∫ τ+ℓ

τ

[
Ñ(min

(
t, τ + ˜dgen

)
)− h

]
dt.

Taking the expectation, we find that

E
[∫ τ+ℓ

τ

[
Ñ(min

(
t, τ + ˜dgen

)
)− h

]
dt
∣∣∣∣Fτ

]
=

∫ τ+ℓ

τ

E
[
Ñ(min

(
t, τ + ˜dgen

)
)− h

∣∣∣Fτ

]
dt

=

∫ τ+ℓ

τ

E
[
V (min

(
t, τ + ˜dgen

)
) + µj

(
min

(
τ + ˜dgen, t

))
− h
∣∣∣Fτ

]
dt

=

∫ τ+ℓ

τ

E
[
V (τ) + µj

(
min

(
τ + ˜dgen, t

))
− h
∣∣∣Fτ

]
dt

(A.1)

≤
∫ τ+ℓ

τ

E [V (τ) + µjt− h|Fτ ] dt

=

∫ τ+ℓ

τ

E
[
Ñ(τ)− µjτ + µjt− h

∣∣∣Fτ

]
dt

=
[
Ñ(τ)− h

]
ℓ+

1

2
µjℓ2,

where (A.1) is an application of Doob’s Optimal Stopping Theorem.
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A.1.3 Proof of Claim A.3: Coupled Probability Bound
We now prove Claim A.3, restated here for the reader’s convenience.
Claim A.3 (Coupling Bound: Probability). Let τ be some stopping time. Let the next down-
crossing time dgen, defined as

dgen ≜ min {t ≥ 0 : N(t+ τ) ≤ h} ,

be the length of time until the number of jobs N(t) is less than some fixed threshold h. We
consider two cases.

In the first case, suppose that we have a lower bound on the number of busy servers Z(t)
over some length ℓ interval starting at time τ , i.e.

Z(t) ≥ R− j,

for all t ∈ [τ, τ +min (ℓ, dgen)] and for some non-negative j. Then, we can bound the threshold-
crossing probability by

Pr (dgen < ℓ|Fτ ) ≥ 2Φ

(
−

[
N(τ)− h+ µjℓ√

ℓ(2kλ− µj)

])
− 2

3
√
ℓ(2kλ− µj)

.

In particular, if N(τ)− h = c
√
µβR, then

Pr (dgen < ℓ|Fτ ) ≥ 2Φ

(
− c1√

2

)
− 1

100
.

In the second case, suppose that we instead have an upper bound on Z(t) ≤ R during this
interval instead. Then,

Pr (dgen < ℓ|Fτ ) ≤ 2Φ

(
−
[
N(τ)− h√

2ℓkλ

])
− 2

3
√
2kλℓ

.

As before, if N(τ)− h = c
√
µβR, then

Pr (dgen < ℓ|Fτ ) ≤ 2Φ

(
− c√

2

)
+

1

100
.

Proof. We prove this result in three parts. First, we use Claim A.1 to construct a process Ñ(t) ≥
N(t) on the interval of interest. Afterwards, we analyze the down-crossing probability of this
coupled process. In particular, we use a reflection argument to show that

Pr (dgen < ℓ) ≥ 2Pr
(
Ñ(τ + ℓ) ≤ h

)
,

then use a Berry-Esseen bound to bound this final probability. In what follows, we focus on the
lower-bound; the upper bound follows in precisely the same way.
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To construct our coupled process, we note that, by assumption, the number of busy servers
Z(t) ≥ R− j for any t ∈ [τ, τ +min (ℓ, dgen)]. Thus, by Claim A.1, the process Ñ(t) defined as

Ñ(t) ≜ N(τ) + A(τ, τ + t) +D [R− j] ([τ, τ + t])

is an upper bound for N(t+ τ), i.e.

Ñ(t) ≥ N(τ + t)

for any t ∈ [0,min (ℓ, dgen)]. By definition, we have that

Pr (dgen < ℓ) = Pr

(
inf
t∈[0,ℓ)

N(τ + t) ≤ h

)
≥ Pr

(
inf
t∈[0,ℓ)

Ñ(t) ≤ h

)
.

From a reflection argument, since Ñ is upwards-biased,

Pr

(
inf
t∈[0,ℓ)

Ñ(t) ≤ h

)
= Pr

(
inf
t∈[0,ℓ)

Ñ(t) ≤ h, Ñ(ℓ) < h

)
+ Pr

(
inf
t∈[0,ℓ)

Ñ(t) ≤ h, Ñ(ℓ) ≥ h

)
≥ 2Pr

(
inf
t∈[0,ℓ)

Ñ(t) ≤ h, Ñ(ℓ) < h

)
= 2Pr

(
Ñ(ℓ) < h

)
.

Let σ ≜
√
ℓ(2kλ− µj). Now, assume that, for any x,∣∣∣Pr(Ñ(ℓ) < Ñ(0) + µjℓ+ xσ

)
− Φ(x)

∣∣∣ ≤ 0.3328

σ
, (A.2)

we have

Pr
(
Ñ(ℓ) < h

)
= Pr

(
Ñ(ℓ) < Ñ(0) + µjℓ+

h− µjℓ− Ñ(0)

σ
· σ

)

≥ Φ

(
h− µjℓ− Ñ(0)

σ

)
− 1

3σ

= Φ

(
− [N(τ)− h+ µjℓ]

σ

)
− 1

3σ
.

Putting this all together, we find

Pr (dgen < ℓ|Fτ ) ≥ 2Φ

(
− [N(τ)− h+ µjℓ]

σ

)
− 2

3σ
.

From here, then, it suffices to show (A.2). To begin, note that, if we choose some arbitrarily
large n and define

Xi ≜ Π′
i

(
kλℓ

n

)
− Π′′

i

(
µ(R− j)ℓ

n

)
− µjℓ

n
,
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where each Π(y) is an independent Poisson random variable with mean y, then

Ñ(ℓ) =d

n∑
i=1

Xi + µjℓ+ Ñ(0).

To compute the moments of Xi, note that one can define centered Poisson random variables
Ai = Π

(
kλℓ
n

)
− kλℓ

n
and Bi = Π

(
µ(R−j)ℓ

n

)
− µ(R−j)ℓ

n
, and then take Xi = Ai − Bi. Doing this,

one finds that

E
[
X2
i

]
= E

[
(Ai −Bi)

2
]
=
kλℓ

n
+
µ(R− j)ℓ

n
=
µ(2R− j)ℓ

n

and, using the triangle inequality, that

E
[
|Xi|3

]
= E

[
|Ai −Bi|3

]
≤ E

[
|Ai|3

]
+ E

[∣∣B3
i

∣∣] = µ(2R− j)ℓ

n
+ o

(
1

n2

)
.

We now apply the main result of [29]. Let σn ≜
√

E [X2
i ] =

√
µ(2R−j)ℓ

n
= σ√

n
and note that

ρn = E
[
|Xi|3

]
< σn + o

(
1
n2

)
(from [4]). Then, noting that ρn ≥ 1.286σ3

n for sufficiently large
n, we have

max
x

∣∣∣∣Pr(∑Xi√
nσn

< x

)
− Φ(x)

∣∣∣∣ ≤ 0.3328ρn + 0.429σ3
n

σ3
n

√
n

=
0.3328√
µ(2R− j)ℓ

+ o

(
1

n

)
.

Now noting that ∑n
i=1Xi√
nσ

=
Ñ(ℓ)− Ñ(0)− µjℓ

σ

and taking n→ ∞, we have our result.

A.1.4 Proof of Claim A.4: Coupled Expectation Bound
Claim A.4 (Coupling Bound: Expected Value). Let τ be some stopping time. Let the next down-
crossing time dgen, defined as

dgen ≜ min {t ≥ 0 : N(t+ τ) ≤ h} ,

be the length of time that passes until the number of jobs N(t) is less than some fixed threshold
h. Suppose that, at time τ , we have a lower bound on the number of busy servers over a period,
i.e.

Z(t) ≥ R− j,

for all t ∈ [τ, τ +min (ℓ, dgen)] and for some j ∈ [R]. Then,

E
[
[N (τ + ℓ)− h]1dgen>ℓ

∣∣Fτ

]
≤ [N(τ)− h] + µjℓ. (A.3)

and
E
[
[N (τ + ℓ)− h]1dgen>ℓ

∣∣Fτ

]
≤ [N(τ)− h+ µjℓ]2 + 2µRℓ. (A.4)
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Proof.

The proof is essentially an application of Doob’s Optional Stopping Theorem to an appropriately
selected martingale. To begin, we define a coupled process Ñ(t) with

Ñ(t− τ) ≜ N(τ) + A[τ, t]−D [R− j] ([τ, t]) ;

by Claim A.1, we know that Ñ(t − τ) ≥ N(t) for any t ∈ [τ, τ +min (dgen, ℓ)], and that the

coupled hitting time ˜dgen ≜ min
{
t > 0 : Ñ(t) ≤ h

}
can not be smaller than the original hitting

time dgen. It follows that
N (τ + ℓ)1dgen>ℓ ≤ Ñ (ℓ)1 ˜dgen>ℓ

.

Thus, it suffices to bound coupled versions of (A.3) and (A.4).

Construction of martingales. We now construct our martingales and set up the language of
optional stopping. Note that, for any process Ñ(t) with independent, stationary increments, both
functions V1 and V2, defined as

V1(t) ≜
[
Ñ(t)− h

]
− E

[
Ñ(t)− Ñ(0)

]
and

V2(t) ≜
[
Ñ(t)− h− E

[
Ñ(t)− Ñ(0)

]]2
− E

[[
Ñ(t)− h− E

[
Ñ(t)− Ñ(0)

]]2]
=
(
Ñ(t)− h− µjt

)2
− µ (2R− j) t

are martingales [23]. Moreover, one has that[
Ñ(ℓ)− h

]
1 ˜dgen>ℓ

=
[
Ñ
(
min

(
˜dgen, ℓ

))
− h
]
1 ˜dgen>ℓ

=
[
Ñ
(
min

(
˜dgen, ℓ

))
− h
]
1 ˜dgen>ℓ

+
[
Ñ
(
min

(
˜dgen, ℓ

))
− h
]
1ℓ≤ ˜dgen

=
[
Ñ
(
min

(
˜dgen, ℓ

))
− h
]
.

Proof of (A.3). Combining these facts allows us to prove our desired result. Applying Doob’s
Optional Stopping Theorem along with our previous deductions, we obtain

E
[
[N (τ + ℓ)− h]1dgen>ℓ

∣∣Fτ

]
≤ E

[[
Ñ (ℓ)− h

]
1 ˜dgen>ℓ

]
= E

[
Ñ
(
min

(
˜dgen, ℓ

))
− h
]

= E
[
V1

(
min

(
˜dgen, ℓ

))]
+ µjE

[
min

(
˜dgen, ℓ

)]
= E [V1 (0)] + µjE

[
min

(
˜dgen, ℓ

)]
=
[
Ñ(0)− h

]
+ µjE

[
min

(
˜dgen, ℓ

)]
≤
[
Ñ(0)− h

]
+ µjℓ

= [N(τ)− h] + µjℓ.
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Proof of (A.4). To do the same for the squared martingale V2(t), we must first note, via some
algebra, that (

Ñ(t)− h
)2

= V2(t) +
(
Ñ(t)− h

)
µjt− µj2t2 + µ (2R− j) t.

Now, applying the same deductions we made previously,

E
[
[N (τ + ℓ)− h]1dgen>ℓ

∣∣Fτ

]
≤ E

[[
Ñ (ℓ)− h

]2
1 ˜dgen>ℓ

]
= E

[(
Ñ
(
min

(
˜dgen, ℓ

))
− h
)2]

= E
[
V2

(
min

(
˜dgen, ℓ

))]
+ E

[(
Ñ(min

(
˜dgen, ℓ

)
)− h

)
µjmin

(
˜dgen, ℓ

)]
− µj2

(
min

(
˜dgen, ℓ

))2
+ µ (2R− j)E

[
min

(
˜dgen, ℓ

)]
≤ E

[
V2

(
min

(
˜dgen, ℓ

))]
+ E

[(
Ñ(min

(
˜dgen, ℓ

)
)− h

)]
µjℓ+ µ (2R) ℓ

≤ E [V2 (0)] +
[
Ñ(0)− h+ µjℓ

]
µjℓ+ µ (2R) ℓ

=
[
Ñ(0)− h

]2
+
[
Ñ(0)− h

]
µjℓ+ (µjℓ)2 + µ (2R) ℓ

=
[
Ñ(0)− h+ µjℓ

]2
−
[
Ñ(0)− h

]
µjℓ+ µ2Rℓ

≤
[
Ñ(0)− h+ µjℓ

]2
+ 2µRℓ

= [N(τ)− h+ µjℓ]2 + 2µRℓ.

□

A.2 Proof of Claim A.5: Bound on the integral over a busy
period.

Claim A.5 (Busy Period Integral Bound). Suppose that, at time τ , we can guarantee thatN(τ) ≥
Z(τ) ≥ R+j. Let ηi ≜ min {t > 0 : N(t) ≤ R + i}, for i ∈ {j, j + 1, . . . , [N(τ)−R]} . Then,

E
[∫ ηj

τ

[N(t)−R]dt
∣∣∣∣Fτ

]
≤ (N(τ)− (R + j))

[
3

2µj
+

1

µ
+

R

µj2

]
+
(N(τ)− (R + j))2

2µj
≜ Ibusy ([N(τ)−R], j) .

Proof. We prove this claim via an appeal to conventional M/M/1 busy period analysis. In partic-
ular, we first note that ∫ ηj

τ

[N(t)−R] dt =
N(τ)−R∑
i=j+1

∫ ηi−1

ηi

[N(t)−R] dt,
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meaning we need only bound the integrals between the ηi’s. To bound that process, we define a
coupled process Ñ(t) and bound the integrals over that process.

To do so, note that, until time ηj , the number of busy servers Z(t) ≥ R + j. By Claim A.1,
we can define, for each index i, the i-th coupled process Ñi(t) as

Ñi(t) = N(ηi+1) + A(ηi+1, t)−D [R + j] ([ηi+1, t)) ,

and have Ñ(t) ≥ N(t) on the interval [ηi+1, ηi]. Furthermore, we can extend our integral of inter-
est from the interval [ηi+1, ηi) to the interval [ηi+1, η̃i), where η̃i ≜ min {t > 0 : N(t) ≤ R + i}.
Now, we note that

E
[∫ η̃i

ηi+1

[
Ñi(t)−R

]
dt
∣∣∣∣Fτ

]
= E

[∫ η̃i

ηi+1

[
Ñi(t)− (R + i)

]
dt
∣∣∣∣Fτ

]
+ iE [ηi+1 − η̃i|Fτ ] .

The first term on the right is simply the expected time integral of the number of jobs in an
M/M/1 queue over a busy period, with arrival rate kλ and departure rate µ(R + j). The second
term is simply the quantity i multipled by the expected length of that M/M/1 busy period. Let
ρj =

kλ
µ(R+j)

. Then, from standard results on the M/M/1 busy period,

E
[∫ η̃i

ηi+1

[
Ñi(t)− (R + i)

]
dt
∣∣∣∣Fτ

]
=

1

µj

[
1

1− ρj

]
=

1

µj

[
R

j
+ 1

]
=

1

µj
+

R

µj2
.

Summing over all values of i, we obtain

E
[∫ ηj

τ

[N(t)−R] dt
∣∣∣∣Fτ

]
≤

N(τ)−R∑
i=j+1

E
[∫ η̃i−1

ηi

[
Ñi(t)−R

]
dt
∣∣∣∣Fτ

]

=

N(τ)−R∑
i=j+1

[
1

µj
+

R

µj2

]
+ i

1

µj

= (N(τ)− (R + j))

[
1

µj
+

R

µj2

]
+ (N(τ)− (R + j))

1

µ

+
1

µj

[
(N(τ)− (R + j)) (N(τ)− (R + j) + 1)

2

]
= (N(τ)− (R + j))

[
3

2µj
+

1

µ
+

R

µj2

]
+

(N(τ)− (R + j))2

2µj
,

as desired. □

A.3 Proof of Claim 6.3: Bound on the probability of an up-
crossing.

We now prove Claim 6.3, restated here.
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Claim 6.3. Let p(j)rise ≜ Pr
(
maxt∈[τj ,min(τj+1,TA)N(t) ≥ R + C3

√
µβR

∣∣ne ≥ j
)

be the proba-
bility that the total number of jobs N(t) exceeds R + C3

√
µβR during epoch j. Then, for

j ≥ A5

√
R,

p
(j)
rise ≥ 0.99

A5√
R
.

We show a more general claim: that, for j ≥ A5

√
R,

p
(j)
rise ≥ 0.99

j

R
. (A.5)

Proof of (A.5)

We begin with a simple probability manipulation:

p
(j)
rise ≜ Pr

(
N(t) ≥ C3

√
µβR at some point during epoch j

∣∣∣Fτj

)
≥ Pr

(
N(t) ≥ C3

√
µβR during the interval [τj,min (τj + β, τj+1)]

∣∣∣Fτj

)
.

From here, we make with a useful observation: since there are no server in setup at the beginning
of an epoch (as we have just turned off a server), no servers can complete setup in the first β time
of an epoch. Thus, the number of busy servers Z(t) ≤ R−j during this time, and, by Claim A.1,
the coupled process

Ñ(t) ≜ N(τj) + A(τj, t)−D [R− j] ((τj, t))

must be a lower bound on N(t), during the interval [τj, τj + β]. Moreover, the number of busy
servers Z(t) can not be smaller than R − j until the beginning of epoch j + 1 either. Thus, we
find that the behavior of N(t) corresponds exactly with the behavior of Ñ(t) during the interval
[τj,min (τj+1, τj + β)].

We now use this coupled process to analyze our original probability. Define the up-crossing
time τup as

τup ≜ min
{
t > 0 : Ñ(τj + t) ≥ R + C3

√
µβR

}
.

Likewise, define the down-crossing time τdown as

τdown ≜ min
{
t > 0 : Ñ(τj + t) ≤ R− (j + 1)

}
.

It follows that

Pr
(
reach N(t) ≤ R− (j + 1) during the interval [τj,min (τj + β, τj+1)]

∣∣Fτj

)
= Pr

(
reach Ñ(t− τj) ≤ R− (j + 1) during the interval [τj,min (τj + β, τj+1)]

∣∣∣Fτj

)
= Pr (τup ≤ β, τup < τdown)

= Pr (τup ≤ β)− Pr (τup ≤ β, τup ≥ τdown)

= Pr (τup ≤ β)− Pr (τup ≤ β|τup ≥ τdown) Pr (τup ≥ τdown) .

67



April 6, 2024
DRAFT

We now observe that
Pr (τup ≤ β|τup ≥ τdown) ≤ Pr (τup ≤ β) , (A.6)

since the process has farther to go, less time to do so, and the process’s behavior is translation-
invariant (this last point is why we needed to analyze the coupled process instead).

Continuing from where we left off, we find that

p
(j)
rise = Pr (τup ≤ β)− Pr (τup ≤ β|τup ≥ τdown) Pr (τup ≥ τdown)

≥ Pr (τup ≤ β)− Pr (τup ≤ β) Pr (τup ≥ τdown)

= Pr (τdown > τup) Pr (τup ≤ β)

≥ Pr (τdown >∞) Pr (τup ≤ β)

=
j

R
Pr (τup ≤ β) ,

where the last equality is a classical result on upwards-biased discrete random walks (one can
think of Ñ as a discrete random walk driven by a Poisson process of rate (kλ+ µ(R− j), where
the probability that Ñ increases at a Poisson event is kλ

kλ+µ(R−j) =
R

2R−j ).
From here, it suffices to lower bound Pr (τup ≤ β). To begin, note

Pr (τup ≤ β) = Pr

(
sup
t∈[0,β)

Ñ(t) ≥ R + C3

√
µβR

)
≥ Pr

(
Ñ(β) ≥ R + C3

√
µβR

)
= Pr

(
A(τj, τj + β)−D [R− j] (τj, τj + β) ≥ j + C3

√
µβR

)
.

Noting that the number of arrivalsA(τj, τj+β) and the number of departures D [R− j] ([τj, τj + β])
are independent Poisson r.v.’s, we can apply the Berry-Esseen bound of Claim A.6 to find

= 1− Φ

(
µβj − j − C3

√
µβR√

µβ(2R− j)

)
− 1

3
√
µβ(2R− j)

≥ 1− Φ

(
0.99µβj − C3

√
µβR√

2µβR

)
− 1

3
√
µβR

= 1− Φ

(
−0.99

j√
R

√
µβ +

C3√
2

)
− 1

3
√
µβR

≥ 1− Φ

(
−9.9A5 +

C3√
2

)
− 1

300
.

To complete the proof, we set the constant A5 such that the final probability is ≥ 0.99. In
particular, we need

Φ

(
−9.9A5 +

C3√
2

)
≤ 2

300
,

which is achieved when A5 >
C3

9.9
√
2
+ 0.25; choosing A5 = 1 gives the result. □
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A.4 Proof of Claim A.6: Berry-Esseen bound for the Skellam
distribution.

Claim A.6 (Berry-Esseen bound for the Skellam distribution). Given two independent random
variables Y1 ∼ Poisson(µ1) and Y2 ∼ Poisson(µ2), as well as a constant C with µ1 > µ2 + C,
one has

Pr (Y1 − Y2 ≥ C) ≥ 1− Φ

(
−
[
µ1 − µ2 − C

µ1 + µ2

])
− 1

3
√
µ1 + µ2

.

A.4.1 Proof.
This follows directly from the Poisson Berry-Esseen bound of [4], applied twice. □

A.5 Proof of Claim 6.8: Wait-Busy Period Bound.
Claim 6.8 (Wait-Busy Period Bound). Let τ be some stopping time. Let the next down-crossing
dgen, defined as

dgen ≜ min {t ≥ 0 : N(t+ τ) ≤ R + h} ,
be the length of time until the number of jobs N(t) ≤ R + h, where h is some positive integer
which is smaller than k − R. Suppose that, at time τ , we know that Z(t + τ) ≥ R for any
t ∈ [0, dgen]. Let ˜dgen be the relative downcrossing time in a coupled system with exactly R busy
servers. Then we have the following bound for the time integral of N(t)−R from τ to τ + dgen:

E
[∫ τ+dgen

τ

[N(t)−R]dt
∣∣∣∣Fτ

]
≤ [N(τ)− (R + h)] ·

[
1

µ
+ β +

1

2µh
+

R

µh2

]
+
(
[N(τ)− (R + h)]+

)2 1

2µh

+ E
[
min

(
β, ˜dgen

)]
·
[
h+

R

h2

]
This proof is a straightforward application of some martingale theory and some basic queue-

ing results on the M/M/1 busy period.

A.5.1 Proof.
We split the integral in question into two parts:∫ dgen

τ

[N(t)−R]dt =
∫ min(dgen,τ+β)

τ

[N(t)−R]dt+ 1dgen>τ+dgen

∫ dgen

τ+β

[N(t)−R]dt.

To find the expectation of the first term, we use our assumption that the number of busy servers
Z(t) ≥ R and apply Claim A.2, finding

E

[∫ min(dgen,τ+β)

τ

[N(t)−R]dt

∣∣∣∣∣Fτ

]
≤ β · [N(τ)−R]] .
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To find the expectation of the second term, we first investigate a conditional version of the
expectation. We note that, if, by time τ + β, the number of jobs N(t) has not dipped below
R +M , then we must have at least R +M servers on at time τ + β. Moreover, none of these
servers can turn off until time dgen. In other words, for the interval [τ + β, dgen], the number of
busy servers Z(t) ≥ R+M . Thus, we can apply Claim A.5 (a bound on the integral over a busy
period with at least R +M servers), and find that

E
[∫ dgen

τ+β

[N(t)−R]dt
∣∣∣∣Fτ+β, τ + β < dgen

]
≤ [N (τ + β)− (R +M)]+

[
3

2µM
+

1

µ
+

R

µM2

]
+

(
[N(τ + β)− (R +M)]+

)2
2µM

.

It follows that

E
[
1dgen>τ+β

∫ dgen

τ+β

[N(t)−R]dt
∣∣∣∣Fτ

]
= E

[
1dgen>τ+βE

[∫ dgen

τ+β

[N(t)−R]dt
∣∣∣∣Fτ+β

]∣∣∣∣Fτ

]
≤ E

[
E

[
1dgen>τ+β

[
(N (τ + β)− (R +M))

[
3

2µM
+

1

µ
+

R

µM2

]
+

(N(τ + β)− (R +M))2

2µM

]∣∣∣∣∣Fτ

]]

=

[
3

2µM
+

1

µ
+

R

µM2

]
E
[
1dgen>τ+β (N(τ + β)− (R +M))

∣∣Fτ

]
+

[
1

2µM

]
E
[
1dgen>τ+β (N(τ + β)− (R +M))2

∣∣Fτ

]
.

Applying Claim A.4, we obtain

≤
[

3

2µM
+

1

µ
+

R

µM2

]
[N(τ)− (R +M)] +

[
1

2µM

] (
[N(τ)− (R +M)]2 + 2µRβ

)
=

[
3

2µM
+

1

µ
+

R

µM2

]
[N(τ)− (R +M)] +

[
1

2µM

]
[N(τ)− (R +M)]2 +

Rβ

M

= Ibusy ([N(τ)− (R +M)] ,M) +
Rβ

M
.

□

A.6 Proof of Claim 6.7: Bound on E [N(TA)].

Claim 6.7 (Upper Bound on E [N(TA)]). Recall that TA ≜ min {t > 0 : Z(t) = R + 1}. Then,

E [N(TA)−R] ≤ F1µβ
√
R

(
1 +

F2√
µβ

)
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and

E
[
(N(TA)−R)2

]
≤ F 2

1 (µβ)
2R

(
1 +

F2√
µβ

)2

+ 2µβR,

where F1 = 2.12 and F2 = 3.645.
To prove this claim, we need only bound E [N(TA)−R] and E

[
(N(TA)−R)2

]
, since

E
[
Ibusy ([N (TA)−R] ,M)

]
=

[
3

2µM
+

1

µ
+

R

µM2

]
E [N (TA)−R] +

[
1

2µM

]
E
[
[N (TA)−R]2

]
.

To be particular, we show that

E [N (TA)−R] ≤ F1µ
√
Rβ + F2

√
µRβ

and
E
[
[N (TA)−R]2

]
≤ F3µ

2Rβ2 + F4

Proof.

The beginning of the proof will be the same for both of these inequalities. Using the up-crossing
and down-crossing decomposition of Section 6.2.1, we know that time TA occurs either during a
rise or during a fall. Since the number of jobs N(t) ≤ R + C3

√
µβR during a rise,

[N (TA)−R]1TA during a rise ≤ C3

√
µβR1TA during a rise.

If TA occurs during a fall, we need a more nuanced bound. Writing out the event {TA during a fall}
in terms of disjoint events, we find

{TA during a fall} =
R⋃
j=0

∞⋃
i=1

{
u
(j)
i ≤ TA < d

(j)
i

}
,

so that, for c ∈ {1, 2},

E [[N (TA)−R]c 1TA during a fall] =
R−1∑
j=0

∞∑
i=1

E
[
[N (TA)−R]c 1

u
(j)
i ≤TA<d

(j)
i

]
=

R−1∑
j=0

∞∑
i=1

E
[
[N (TA)−R]c 1

TA<d
(j)
i

∣∣∣F
u
(j)
i
, n(j)

u ≥ i
]
Pr
(
nju ≥ i

)
.

To bound this conditional expectation, we apply Claim A.2. Notice that N(u
(j)
i ) − R =

C3

√
µβR, the (R + 1)-th server starts up at time TA = u

(j)
i + YR+1(u

(j)
i ) if TA < d

(j)
i , the time

d
(j)
i is a hitting time, and that Z(t) ≥ R− j until time τj+1 ≥ d

(j)
i . It follows that

E
[
[N (TA)−R]1

TA<d
(j)
i

∣∣∣F
u
(j)
i
, n(j)

u ≥ i
]
≤ C3

√
µβR + µjYR+1(u

(j)
i ) ≤ C3

√
µβR + µjβ,
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and that

E
[
[N (TA)−R]2 1

TA<d
(j)
i

∣∣∣F
u
(j)
i
, n(j)

u ≥ i
]
≤
(
C3

√
µβR + µjYR+1

(
u
(j)
i

))2
+ µ2RYR+1

(
u
(j)
i

)
≤
(
C3

√
µβR + µjβ

)2
+ µ2Rβ

= C2
3µβR + 2C3

√
µβRµβj + (µβ)2j2 + 2µRβ.

It now suffices to bound
∑

j

∑
i j
c Pr

(
n
(j)
u ≥ i

)
, where c ∈ {0, 1, 2}. We do this via the

same method used in Section 6.2.1:

R∑
j=1

∞∑
i=1

jc Pr
(
n(j)
u ≥ i

)
≤

R∑
j=1

∞∑
i=1

jc Pr (ne ≥ j) p
(j)
rise(1− p2)

i−1

=
1

p2

R∑
j=1

jcp
(j)
rise Pr (ne ≥ j)

≤ 1

C4p2

R∑
j=1

jcC4p
(j)
rise

j−1∏
ℓ=0

(
1− C4p

(ℓ)
rise

)
.

This is simply the expectation of a time-varying geometric random variableG, with Pr (G = j|G ≥ j) =

C4p
(j)
rise. It follows that if one lower-bounds p(j)rise, then an upper bound on the desired expec-

tation is obtained. Applying Claim 6.3, we note that we are essentially bounding G using
Y ∼ Geometric

(
0.99C4A5√

R

)
and saying Y + A5

√
R stochastically-dominates G. It follows that

E [G] ≤ A5

√
R +

1

0.99C4A5

√
R

and that, for any b,

E
[
(G+ b)2

]
≤ E

[
(Y + A5

√
R + b)2

]
= E

[
Y 2
]
+ 2(A5

√
R + b)E [Y ] + (A5

√
R + b)2

= 2E [Y ]2 − E [Y ] + 2
(
A5

√
R + b

)
E [Y ] +

(
A5

√
R + b

)2
≤
(
E [Y ] + A5

√
R + b

)2
+ E [Y ]2 .

Defining B5 ≜ C3

C4p2
, B6 ≜ 1

C4p2

(
1

0.99C4A5
+ A5

)
, and B7 ≜ 1

2C4p2

[
1

(0.99C4A5)2
+ 2
]
, it follows
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that

E
[
[N (TA)−R]2 1TA during a fall

]
≤ 1

C4p2

R∑
j=1

C4p
(j)
rise

[(
C3

√
µβR + µjβ

)2
+ µ2Rβ

] j−1∏
ℓ=0

(
1− C4p

(ℓ)
rise

)
=

1

C4p2
E
[(
C3

√
µβR + µGβ

)2
+ µ2Rβ

]
≤ 1

C4p2
E
[(
C3

√
µβR + µβY + µβA5

√
R
)2

+ µ2Rβ

]
=

1

C4p2

[(
C3

√
µβR + µβ

1

0.99C4A5

√
R + µβA5

√
R

)2

+ µβ
1

(0.99C4A5)2
R + 2µβR

]

≤ 1

C2
4p

2
2

[(
C3

√
µβR + µβ

1

0.99C4A5

√
R + µβA5

√
R

)2
]
+

1

C4p2

[
1

(0.99C4A5)2
+ 2

]
µβR

=
(
B5

√
µβR +B6µβ

√
R
)2

+ 2B7µβR.

and that

E [[N (TA)−R]1TA during a fall]

≤ 1

C4p2

R∑
j=1

C4p
(j)
rise

[
C3

√
µβR + µjβ

] j−1∏
ℓ=0

(
1− C4p

(ℓ)
rise

)
=

1

C4p2
E
[
C3

√
µβR + µβG

]
≤ 1

C4p2

[
C3

√
µβR + µβ

(
A5

√
R +

1

0.99C4A5

√
R

)]
=
(
B5

√
µβR +B6µβ

√
R
)
.

It follows that
E [N(TA)−R] ≤

(
B5

√
µβR +B6µβ

√
R
)

and that

E
[
[N (TA)−R]2

]
≤
(
B5

√
µβR +B6µβ

√
R
)2

+ 2B7µβR.

Thus, we have that, using implicitly the formula from Claim A.5,

E
[
Ibusy ([N (TA)−R] ,M)

]
= Ibusy

(
B5

√
µβR +B6µβ

√
R,M

)
+B7

βR

M
,

completing the claim. □
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A.7 Hitting Time Bounds

A.7.1 Proof of Claim A.7: Discrete-Time Hitting Time Tail Bound.

Claim A.7 (Discrete-Time Hitting Time Tail Bound). Suppose one has an upwards-biased dis-
crete random walk V (t) where in each step

Pr (V (t+ 1) = V (t) + 1|Ft) = p = 1− q,

where p ≥ 1
2
≥ q. Suppose that V (0) = 1 and let the hitting time γ ≜ min {t ∈ N : V (t) = 0}

be the first timestep where the walk V (t) = 0. Then, for n ≥ 1,

Pr (γ ≥ 2m+ 1) ≤ 1√
π

2q√
m

(
1 +

1

2(m+ 1)

)
.

Moreover, if p = q = 1
2
, then

Pr (γ ≥ 2m+ 1) ≥ 1√
π
e−

1
6m

1√
m+ 1

.

Proof

We first note, as in [32], that by a counting argument Pr (γ = 2ℓ+ 1) = q (qp)ℓCℓ, where Cℓ ≜
1
ℓ+1

(2ℓ)!
ℓ!ℓ!

is the ℓ-th Catalan number; note that γ can not be even, since the number of downward
steps must exceed the number of upward steps by exactly 1.

We proceed by bounding the Catalan numbers using Stirling’s approximation. For m = 0,
then Pr (γ ≥ 1) = Pr (γ ≥ 2) = p, i.e. the probability that the first step is an upward step. For
m ≥ 1, applying Stirling’s approximation and simplifying gives

e−
1
6ℓ

1√
πℓ(ℓ+ 1)

q (4pq)ℓ ≤ Pr (γ = 2ℓ+ 1) ≤ 1√
πℓ(ℓ+ 1)

q (4pq)ℓ .

Lower bound. Since we are interested in the lower bound only when q = p = 1
2
, we obtain

that

Pr (γ ≥ 2m+ 1) ≥ 1√
pi

1

2

∞∑
ℓ=m

e−
1
6ℓ

√
ℓ(ℓ+ 1)

≥ 1√
π
e−

1
6m

1

2

∞∑
ℓ=m

1√
ℓ(ℓ+ 1)

≥ 1√
π
e−

1
6m

1

2

∫ ∞

m

1

(ℓ+ 1)3/2
dℓ

=
1√
π
e−

1
6m

1√
m+ 1

.
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Upper bound. Noting that 4pq ≤ 1, we have likewise that

Pr (γ ≥ 2m+ 1) ≤ 1√
π
q

∞∑
ℓ=m

1√
ℓ(ℓ+ 1)

≤ 1√
π
q

1√
m(m+ 1)

+

∫ ∞

m

1

ℓ3/2
dℓ

=
1√
π
q

2√
m

(
1 +

1

2(m+ 1)

)
.

A.7.2 Proof of Claim A.8:[Continuous-Time Hitting Time Tail Bound.

We further extend this discrete-time bound into a continuous-time bound.
Claim A.8 (Continuous-Time Hitting Time Tail Bound). Suppose one has an Poisson arrival
process YA(t) of rate kλ and a Poisson departure process YD(t) of rate µ(R − j), for some
integer j ≥ 0. Let the continuous random walk Xc(t) = YA(t) − YD(t), with Xc(0) = 1, and
define γc ≜ min {t > 0 : Xc(t) = 0}. Let ν = (2R− j)µt. For any ν ≥ 3, we have

Pr (γc ≥ t) ≤ b1√
2

(
1√
ν
+

b2
ν3/2

)

where b1 =
√

2
π

and b2 = 1 + 2.5
b1
√
2
.

Moreover, if j = 0, then

Pr (γc ≥ t) ≥ b1√
2
e−

1
3(ν−1)

1√
ν + 2

.

Proof of Upper Bound.

To prove this claim, we first condition on the value of YT = YA(t) + YD(t), the total number of
Poisson events during the interval [0, t], then relate that to the same question in a discrete-time
random walk, a la Claim A.7. Note that YT ∼ Poisson(ν), and thus

Pr (γc ≥ t) = Pr (γ ≥ YT )

=
∞∑
j=0

e−ν
νj

j!
Pr (γ ≥ j)

= e−ν + 2pνe−ν +
∞∑
j=3

e−ν
νj

j!
Pr (γ ≥ j + 1j is even)

= e−ν + 2pνe−ν +
∞∑
j=0

e−ν
νj

j!
Pr

(
γ ≥ 2

(
j + 1j is even − 1

2

)
+ 1

)
.
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Applying the discrete upper bound to the sum, we obtain

∞∑
j=3

e−ν
νj

j!
Pr

(
γ ≥ 2

(
j + 1j is even − 1

2

)
+ 1

)

≤ b1
√
2q

∞∑
j=3

e−ν
νj

j!

1√
j + 1j is even − 1

(
1 +

1

(j + 1j is even + 1)

)

= b1
√
2q

1

ν

∞∑
j=3

e−ν
ν(j+1)

(j + 1)!

1√
j + 1j is even − 1

(
j + 1 +

j + 1

j + 1j is even + 1

)

≤ b1
√
2q

1

ν

∞∑
j=3

e−ν
ν(j+1)

(j + 1)!

j + 2√
j + 1j is even − 1

≤ b1
√
2q

1

ν

∞∑
j=3

e−ν
ν(j+1)

(j + 1)!

j + 1j is even − 1 + 3√
j + 1j is even − 1

= b1
√
2q

1

ν

∞∑
j=3

e−ν
ν(j+1)

(j + 1)!

(√
j + 1j is even − 1 +

3√
j + 1j is even − 1

)
.

From here, we note that the function f(x) =
√
x + 3√

x
is both increasing and concave for all

x ≥ 3. After increasing the argument and applying Jensen’s inequality, we find that

≤ b1
√
2q

1

ν

∞∑
j=3

e−ν
ν(j+1)

(j + 1)!

(√
j + 1 +

3√
j + 1

)
≤ b1

√
2q

1

ν

(√
ν +

3√
ν

)
,

where in the final line we have used that the function f(x) is increasing in x for any x ≥ 3, and
that E [YT1YT≥4] ≥ ν − 3 ≥ 3. Thus, we have that

Pr (γc ≥ t) ≤ (3ν) e−ν + 2q

√
2

π

(
1√
ν
+

1

ν3/2

)
≤ 2.5

ν3/2
+ 2q

√
2

π

(
1√
ν
+

1

ν3/2

)
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Proof of Lower Bound.

We approach the initial stages of the proof in the precisely the same way, obtaining

Pr (γc ≥ t) = Pr (γ ≥ YT )

= e−ν + 2pνe−ν +
∞∑
j=3

e−ν
νj

j!
Pr

(
γ ≥ 2

(
j + 1j is even − 1

2

)
+ 1

)

≥
∞∑
j=3

e−ν
νj

j!
b1e

− 1
3(j+1j is even−1)

q
√
2√

(j + 1j is even + 1)

≥
∞∑
j=3

e−ν
νj

j!
b1e

− 1
3(j−1)

q
√
2√

(j + 2)
.

Applying Jensen’s inequality, we obtain

≥ b1q
√
2e−

1
3(ν−1)

1√
ν + 2

.

□

A.7.3 Proof of Claim A.9: Bound on Expected Length of Stopped Random
Walk.

Claim A.9 (Bound on Expected Length of Stopped Random Walk). Suppose we have a critically
loaded M/M/1 queue with arrival rate and departure rate both equal to kλ. Suppose also that at
time 0, a job arrives. Let τ be the length of the busy period which follows. Then,

E [min (β, τ)] ≤ 1

µ

2b1
√
µβ√
R

+
6

µR
.

Proof of Claim A.9.

From Claim A.8, the continuous-time hitting time bound, we have that

Pr (τ ≥ t) ≤ b1√
2

(
1√
ν
+

b2
ν3/2

)
, (A.7)

where ν = 2µRt and we require that ν ≥ 3. By integrating this bound (using a bound of 1
wherever this bound is ≥ 1), and using the fact that the setup time β and the offered load R are
both at least 100, we obtain

E [min (β, τ)] =

∫ β

0

Pr (τ > t) dt ≤ 1

µ

2b1
√
µβ√
R

+
6

µR
.

as desired. □
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A.8 Claim A.10: M/M/∞ Passage Time Bound.
Claim A.10 (M/M/∞ Passage Time Bound). Given an M/M/∞ queue, let Tx→y denote the ran-
dom amount of time taken to go from state x to state y. Suppose this system has an arrival rate
of kλ and a per-server departure rate of µ. Let R ≜ k λ

µ
. Then, for any h such that 1 ≤ h ≤

√
R,

E
[
T(R+h−1)→(R+h)

]
≤

√
2π

µ
√
R

(
1 +

h

R

)h− 1
2

e
1

12R ≤ D2

√
π

µ
√
R
.

Proof.

The proof here is quite simple. First, we note that the passage time in the M/M/∞ from state
(R + h − 1) to state (R + h) is exactly the passage time from those states in the M/M/(R +
h)/(R + h). This new system has a nice product form, so that

E
[
T(R+h−1)→(R+h)

]
≤ E

[
T(R+h)→(R+h)

]
=

1

µ(R + h)

1

πR+h

=
1

µ(R + h)

∑R+h
i=0

Ri

i!
RR+h

(R+h)!

≤ 1

µ(R + h)
eR

(R + h)!

RR+h

≤ 1

µ(R + h)
eR
e

1
12(R+h)

√
2π(R + h)(R + h)R+he−(R+h)

RR+h

≤ e
1

12R
1

µ

1

µ
√
R + h

√
2π

(
1 +

h

R

)R+h

e−h

≤
√
2π

µ
√
R

(
1 +

h

R

)h− 1
2

e
1

12R

≤ 1

µ

√
2π√
R
e
h2

R e
1

12R

≤ 7

µ
√
R
,

where we have made extensive use of Stirling’s approximation and the bound (1 + x) ≤ ex.

A.9 Proof of (5.3): Bound on the first long index E [L].
Proof Outline. We prove (5.3) by first showing that

Pr (L > j|L ≥ j) ≥
(
1− j

R

)(
1− b1√

µβR

)
, (A.8)
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where b1 = 2√
π

. Next, we show that this implies that, for any δ ∈ (0, 1) and any j < δR,

Pr (L > j) ≥
(
1− b1√

µβR

)j+1

e−
j(j+1)

2R
1

1−δ . (A.9)

From here, we use the sum of tails formula E [L] =
∑∞

j=0 Pr (L > j) to show

E [L] ≥
(
1− b1√

µβR

)([√
π

2
(1− δ)− 1.15(1− δ)√

µβ

]√
R− 1

2
− 2(1− δ)

δ
e−R

δ2

1−δ

)
.

(A.10)

Choosing δ = 2√
R

then noting that µβ ≥ 100 and R ≥ 100 gives the result.

Proof of (A.8).

Recall that an epoch j is long if τj+1−τj > β, that L is the index of the first long epoch, and that,
if L ≥ j, then we learn that L ≥ j precisely at time τj , i.e. when epoch j begins. Moreover, since
the system is Markovian, the behavior of the system from τj onwards is completely independent
of what happened previously. Thus,

Pr (L > j|L ≥ j) = Pr
(
L > j

∣∣Fτj , L ≥ j
)
= Pr

(
τj+1 − τj ≤ β

∣∣Fτj , L ≥ j
)
= Pr (τj+1 − τj ≤ β) .

From here, we note that the random time τj+1 − τj is a stopping time; a hitting time, to be exact.
Moreover, since the number of servers Z(t) can not increase before time τj + β and can not
decrease until τj+1, we have that the coupled process Ñ(t) defined as

Ñ(t− τj) ≜ 1 + A(τj, t)−D [R− j] ((τj, t))

is in correspondence with N(t); in particular,

N(t) = Ñ(t− τj) +R− j − 1

for any time t ∈ [τj,min (τj + β, τj+1)]. If we define the coupled hitting time γc ≜ min
{
t > 0 : Ñ(t) ≤ 0

}
,

then we also have that the hitting time γc = τj+1 − τj , whenever the event {τj+1 − τj ≤ β} oc-
curs. From here, we can apply Claim A.8 to find that

Pr (γc ≤ β) ≥
(
1− j

R

)(
1− b1√

µβR

)
, as desired.
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Proof of (A.9).

Having shown the above bound on the conditional extension of the tail, we note that, for j ≤ δR

Pr (L ≥ j + 1) = Pr (L ≥ j + 1|L ≥ j) Pr (L ≥ j|L ≥ j − 1) · · ·Pr (L ≥ 1)

≥
j∏
i=0

(
1− i

R

)(
1− b1√

µβR

)

≥
(
1− b1√

µβR

)j+1 j∏
i=0

e−
i

R−i

≥
(
1− b1√

µβR

)j+1

e−
∑j
i=0

i
R−i

=

(
1− b1√

µβR

)j+1

e−
∑j
i=0

i
R

R
R−j

=

(
1− b1√

µβR

)j+1

e−
j(j+1)

2R
1

1−δ ,

as desired. □

Proof of (A.10).

We now complete the proof. Let a ≜ 1
2R

1
1−δ and ψ ≜ − ln

(
1− b1√

µβR

)
as a shorthand. Then we

can rewrite (A.9) as
Pr (L ≥ j + 1) ≥ e−aj

2−(ψ+a)j−ψ.

Now, using the sum-of-tails formula for expectations, we find that

E [L] =
R−1∑
j=0

Pr (L ≥ j + 1)

≥
δR−1∑
j=0

Pr (L ≥ j + 1)

≥
δR−1∑
j=0

e−aj
2−(ψ+a)j−ψ

≥
∫ δR

0

e−aj
2−(ψ+a)j−ψdj

=

∫ δR

0

e−a(j
2+(ψa+1)j)−ψdj

=

∫ δR

0

e−a(j+
1
2(

ψ
a
+1))

2
+a

4 (
ψ
a
+1)

2
−ψdj

= e
a
4 (

ψ
a
+1)

2
−ψ
∫ δR

0

e−a(j+
1
2(

ψ
a
+1))

2

dj.
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Evaluating the integral further, we find that∫ δR

0

e−a(j+
1
2(

ψ
a
+1))

2

dj =
∫ δR+ 1

2(
ψ
a
+1)

1
2(

ψ
a
+1)

e−aj
2

dj

=

∫ ∞

0

e−aj
2

dj −
∫ 1

2(
ψ
a
+1)

0

e−aj
2

dj −
∫ ∞

δR+ 1
2(

ψ
a
+1)

e−aj
2

dj.

We now bound each of these integrals in turn. First, we know classically that∫ ∞

0

e−aj
2

dj =
1

2

√
π

a
=

√
π

2
·
√
1− δ

√
R ≥

√
π

2
· (1− δ)

√
R

Next, we note that, since the integrand is ≤ 1,∫ 1
2(

ψ
a
+1)

0

e−aj
2

dj ≤ 1

2

(
ψ

a
+ 1

)
=

1

2

(
2R(1− δ) ln

(
1

1− b1√
µβR

))
+

1

2

≤ R(1− δ)
b1√
µβR

1

1− b1√
µβR

+
1

2

≤
(

1√
β

)
(1− δ) · 100 · b1

100− b1

√
R +

1

2

≤ 1.15(1− δ)√
µβ

√
R +

1

2
.

Finally, we have that,∫ ∞

δR+ 1
2(

ψ
a
+1)

e−aj
2

dj ≤
∫ ∞

δR

e−aj
2

dj ≤
∫ ∞

δR

e−aδRjdj =
1

aδR
e−aδ

2R2

=
2(1− δ)

δ
e−R

δ2

1−δ .

To complete the proof, we note that e−ψ =
(
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)
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From here, we could choose δ to maximize our lower bound further based on system parameters,
but a simple choice is δ = 2√

R
. This gives

E [L] ≥
(
1− b1√

µβR

)[(
1− 2√

R

)(√
π

2
− 1.15√

µβ
− 2e−4

)
− 1

2
√
R

]√
R

≥ 2

3

√
π

2

√
R,

as desired.

82



April 6, 2024
DRAFT

Bibliography

[1] Jesus R Artalejo, Antonis Economou, and Maria Jesus Lopez-Herrero. Analysis of a Mul-
tiserver Queue with Setup Times. Queueing Syst., 51(1):53–76, 2005. 2.1.2

[2] Wolfgang Bischof. Analysis of M/G/1-Queues with Setup Times and Vacations under Six
Different Service Disciplines. Queueing Syst., 39(4):265–301, 2001. 2.1.1

[3] Gautam Choudhury. On a batch arrival Poisson queue with a random setup time and vaca-
tion period. Comp. & Oper. Res., 25(12):1013–1026, 1998. 2.1.1

[4] John D. Cook. Details for error bound on normal approximation to the Poisson distribution.
https://www.johndcook.com/blog/berry_esseen_poisson/. Accessed:
01/16/2024. A.1.3, A.4.1

[5] Andrew Daw and Jamol Pender. Queues driven by hawkes processes. Stochastic Systems,
8(3):192–229, 2018. 8.3

[6] Andrew Daw, Robert C Hampshire, and Jamol Pender. How to staff when customers arrive
in batches. arXiv preprint arXiv:1907.12650, 2019. 9.3.2

[7] Zohar Feldman, Avishai Mandelbaum, William A Massey, and Ward Whitt. Staffing of
time-varying queues to achieve time-stable performance. Management Science, 54(2):324–
338, 2008. 8.3, 9.3.2

[8] Anshul Gandhi and Mor Harchol-Balter. How Data Center Size Impacts the Effectiveness
of Dynamic Power Management. In Proc. Ann. Allerton Conf. Communication, Control
and Computing, pages 1164–1169, Urbana-Champaign, IL, September 2011. 2.4

[9] Anshul Gandhi and Mor Harchol-Balter. M/G/k with staggered setup. Oper. Res. Lett., 41
(4):317–320, 2013. 2.1.2

[10] Anshul Gandhi, Varun Gupta, Mor Harchol-Balter, and Michael Kozuch. Optimality analy-
sis of energy-performance trade-off for server farm management. In Proc. Int. Symp. Com-
puter Performance, Modeling, Measurements and Evaluation (IFIP Performance), Namur,
Belgium, November 2010. 2.4

[11] Anshul Gandhi, Mor Harchol-Balter, and Ivo Adan. Server farms with setup costs. Perfor-
mance Evaluation, 67(11):1123–1138, 2010. 2.1.2, 2.2.1, 2.2.2, 2.4

[12] Anshul Gandhi, Mor Harchol-Balter, and Mike Kozuch. The case for sleep states in servers.
In SOSP Workshop on Power-Aware Computing and Systems (HotPower), pages 1–5, Cas-
cais, Portugal, October 2011. 2.4

[13] Anshul Gandhi, Mor Harchol-Balter, and Mike Kozuch. Are sleep states effective in data

83

https://www.johndcook.com/blog/berry_esseen_poisson/


April 6, 2024
DRAFT

centers? In Int. Conf. Green Computing (IGCC), pages 1–10, San Jose, CA, 2012. 2.4

[14] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and Michael A Kozuch. Au-
toScale: Dynamic, Robust Capacity Management for Multi-Tier Data Centers. ACM Trans.
Comput. Syst., 30(4):1–26, 2012. 2.4

[15] Anshul Gandhi, Sherwin Doroudi, Mor Harchol-Balter, and Alan Scheller-Wolf. Exact
analysis of the M/M/k/setup class of Markov chains via Recursive Renewal Reward. In
Queueing Syst., pages 153–166, 2013. 1.2.2, 2.2.2

[16] Shlomo Halfin and Ward Whitt. Heavy-traffic limits for queues with many exponential
servers. Operations research, 29(3):567–588, 1981. 8.3

[17] Mor Harchol-Balter. Performance modeling and design of computer systems: queueing
theory in action. Cambridge University Press, 2013. 4.1.1

[18] Qi-Ming He and E Jewkes. Flow time in the MAP/G/1 queue with customer batching and
setup times. Stochastic Models, 11(4):691–711, 1995. 2.1.1

[19] Yige Hong and Ziv Scully. Performance of the gittins policy in the g/g/1 and g/g/k, with
and without setup times. ACM SIGMETRICS Performance Evaluation Review, 51(2):33–
35, 2023. 2.3
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